README.rst 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315
  1. .. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
  2. .. image:: https://readthedocs.org/projects/ray/badge/?version=master
  3. :target: http://docs.ray.io/en/master/?badge=master
  4. .. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue
  5. :target: https://forms.gle/9TSdDYUgxYs8SA9e8
  6. .. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue
  7. :target: https://discuss.ray.io/
  8. |
  9. **Ray provides a simple, universal API for building distributed applications.**
  10. Ray is packaged with the following libraries for accelerating machine learning workloads:
  11. - `Tune`_: Scalable Hyperparameter Tuning
  12. - `RLlib`_: Scalable Reinforcement Learning
  13. - `RaySGD <https://docs.ray.io/en/master/raysgd/raysgd.html>`__: Distributed Training Wrappers
  14. - `Ray Serve`_: Scalable and Programmable Serving
  15. There are also many `community integrations <https://docs.ray.io/en/master/ray-libraries.html>`_ with Ray, including `Dask`_, `MARS`_, `Modin`_, `Horovod`_, `Hugging Face`_, `Scikit-learn`_, and others. Check out the `full list of Ray distributed libraries here <https://docs.ray.io/en/master/ray-libraries.html>`_.
  16. Install Ray with: ``pip install ray``. For nightly wheels, see the
  17. `Installation page <https://docs.ray.io/en/master/installation.html>`__.
  18. .. _`Modin`: https://github.com/modin-project/modin
  19. .. _`Hugging Face`: https://huggingface.co/transformers/main_classes/trainer.html#transformers.Trainer.hyperparameter_search
  20. .. _`MARS`: https://docs.ray.io/en/master/mars-on-ray.html
  21. .. _`Dask`: https://docs.ray.io/en/master/dask-on-ray.html
  22. .. _`Horovod`: https://horovod.readthedocs.io/en/stable/ray_include.html
  23. .. _`Scikit-learn`: joblib.html
  24. Quick Start
  25. -----------
  26. Execute Python functions in parallel.
  27. .. code-block:: python
  28. import ray
  29. ray.init()
  30. @ray.remote
  31. def f(x):
  32. return x * x
  33. futures = [f.remote(i) for i in range(4)]
  34. print(ray.get(futures))
  35. To use Ray's actor model:
  36. .. code-block:: python
  37. import ray
  38. ray.init()
  39. @ray.remote
  40. class Counter(object):
  41. def __init__(self):
  42. self.n = 0
  43. def increment(self):
  44. self.n += 1
  45. def read(self):
  46. return self.n
  47. counters = [Counter.remote() for i in range(4)]
  48. [c.increment.remote() for c in counters]
  49. futures = [c.read.remote() for c in counters]
  50. print(ray.get(futures))
  51. Ray programs can run on a single machine, and can also seamlessly scale to large clusters. To execute the above Ray script in the cloud, just download `this configuration file <https://github.com/ray-project/ray/blob/master/python/ray/autoscaler/aws/example-full.yaml>`__, and run:
  52. ``ray submit [CLUSTER.YAML] example.py --start``
  53. Read more about `launching clusters <https://docs.ray.io/en/master/cluster/index.html>`_.
  54. Tune Quick Start
  55. ----------------
  56. .. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/tune-wide.png
  57. `Tune`_ is a library for hyperparameter tuning at any scale.
  58. - Launch a multi-node distributed hyperparameter sweep in less than 10 lines of code.
  59. - Supports any deep learning framework, including PyTorch, `PyTorch Lightning <https://github.com/williamFalcon/pytorch-lightning>`_, TensorFlow, and Keras.
  60. - Visualize results with `TensorBoard <https://www.tensorflow.org/tensorboard>`__.
  61. - Choose among scalable SOTA algorithms such as `Population Based Training (PBT)`_, `Vizier's Median Stopping Rule`_, `HyperBand/ASHA`_.
  62. - Tune integrates with many optimization libraries such as `Facebook Ax <http://ax.dev>`_, `HyperOpt <https://github.com/hyperopt/hyperopt>`_, and `Bayesian Optimization <https://github.com/fmfn/BayesianOptimization>`_ and enables you to scale them transparently.
  63. To run this example, you will need to install the following:
  64. .. code-block:: bash
  65. $ pip install "ray[tune]"
  66. This example runs a parallel grid search to optimize an example objective function.
  67. .. code-block:: python
  68. from ray import tune
  69. def objective(step, alpha, beta):
  70. return (0.1 + alpha * step / 100)**(-1) + beta * 0.1
  71. def training_function(config):
  72. # Hyperparameters
  73. alpha, beta = config["alpha"], config["beta"]
  74. for step in range(10):
  75. # Iterative training function - can be any arbitrary training procedure.
  76. intermediate_score = objective(step, alpha, beta)
  77. # Feed the score back back to Tune.
  78. tune.report(mean_loss=intermediate_score)
  79. analysis = tune.run(
  80. training_function,
  81. config={
  82. "alpha": tune.grid_search([0.001, 0.01, 0.1]),
  83. "beta": tune.choice([1, 2, 3])
  84. })
  85. print("Best config: ", analysis.get_best_config(metric="mean_loss", mode="min"))
  86. # Get a dataframe for analyzing trial results.
  87. df = analysis.results_df
  88. If TensorBoard is installed, automatically visualize all trial results:
  89. .. code-block:: bash
  90. tensorboard --logdir ~/ray_results
  91. .. _`Tune`: https://docs.ray.io/en/master/tune.html
  92. .. _`Population Based Training (PBT)`: https://docs.ray.io/en/master/tune-schedulers.html#population-based-training-pbt
  93. .. _`Vizier's Median Stopping Rule`: https://docs.ray.io/en/master/tune-schedulers.html#median-stopping-rule
  94. .. _`HyperBand/ASHA`: https://docs.ray.io/en/master/tune-schedulers.html#asynchronous-hyperband
  95. RLlib Quick Start
  96. -----------------
  97. .. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/rllib-wide.jpg
  98. `RLlib`_ is an open-source library for reinforcement learning built on top of Ray that offers both high scalability and a unified API for a variety of applications.
  99. .. code-block:: bash
  100. pip install tensorflow # or tensorflow-gpu
  101. pip install "ray[rllib]"
  102. .. code-block:: python
  103. import gym
  104. from gym.spaces import Discrete, Box
  105. from ray import tune
  106. class SimpleCorridor(gym.Env):
  107. def __init__(self, config):
  108. self.end_pos = config["corridor_length"]
  109. self.cur_pos = 0
  110. self.action_space = Discrete(2)
  111. self.observation_space = Box(0.0, self.end_pos, shape=(1, ))
  112. def reset(self):
  113. self.cur_pos = 0
  114. return [self.cur_pos]
  115. def step(self, action):
  116. if action == 0 and self.cur_pos > 0:
  117. self.cur_pos -= 1
  118. elif action == 1:
  119. self.cur_pos += 1
  120. done = self.cur_pos >= self.end_pos
  121. return [self.cur_pos], 1 if done else 0, done, {}
  122. tune.run(
  123. "PPO",
  124. config={
  125. "env": SimpleCorridor,
  126. "num_workers": 4,
  127. "env_config": {"corridor_length": 5}})
  128. .. _`RLlib`: https://docs.ray.io/en/master/rllib.html
  129. Ray Serve Quick Start
  130. ---------------------
  131. .. image:: https://raw.githubusercontent.com/ray-project/ray/master/doc/source/serve/logo.svg
  132. :width: 400
  133. `Ray Serve`_ is a scalable model-serving library built on Ray. It is:
  134. - Framework Agnostic: Use the same toolkit to serve everything from deep
  135. learning models built with frameworks like PyTorch or Tensorflow & Keras
  136. to Scikit-Learn models or arbitrary business logic.
  137. - Python First: Configure your model serving declaratively in pure Python,
  138. without needing YAMLs or JSON configs.
  139. - Performance Oriented: Turn on batching, pipelining, and GPU acceleration to
  140. increase the throughput of your model.
  141. - Composition Native: Allow you to create "model pipelines" by composing multiple
  142. models together to drive a single prediction.
  143. - Horizontally Scalable: Serve can linearly scale as you add more machines. Enable
  144. your ML-powered service to handle growing traffic.
  145. To run this example, you will need to install the following:
  146. .. code-block:: bash
  147. $ pip install scikit-learn
  148. $ pip install "ray[serve]"
  149. This example runs serves a scikit-learn gradient boosting classifier.
  150. .. code-block:: python
  151. from ray import serve
  152. import pickle
  153. import requests
  154. from sklearn.datasets import load_iris
  155. from sklearn.ensemble import GradientBoostingClassifier
  156. # Train model
  157. iris_dataset = load_iris()
  158. model = GradientBoostingClassifier()
  159. model.fit(iris_dataset["data"], iris_dataset["target"])
  160. # Define Ray Serve model,
  161. class BoostingModel:
  162. def __init__(self):
  163. self.model = model
  164. self.label_list = iris_dataset["target_names"].tolist()
  165. def __call__(self, flask_request):
  166. payload = flask_request.json["vector"]
  167. print("Worker: received flask request with data", payload)
  168. prediction = self.model.predict([payload])[0]
  169. human_name = self.label_list[prediction]
  170. return {"result": human_name}
  171. # Deploy model
  172. client = serve.start()
  173. client.create_backend("iris:v1", BoostingModel)
  174. client.create_endpoint("iris_classifier", backend="iris:v1", route="/iris")
  175. # Query it!
  176. sample_request_input = {"vector": [1.2, 1.0, 1.1, 0.9]}
  177. response = requests.get("http://localhost:8000/iris", json=sample_request_input)
  178. print(response.text)
  179. # Result:
  180. # {
  181. # "result": "versicolor"
  182. # }
  183. .. _`Ray Serve`: https://docs.ray.io/en/master/serve/index.html
  184. More Information
  185. ----------------
  186. - `Documentation`_
  187. - `Tutorial`_
  188. - `Blog`_
  189. - `Ray 1.0 Architecture whitepaper`_ **(new)**
  190. - `Ray Design Patterns`_ **(new)**
  191. - `RLlib paper`_
  192. - `RLlib flow paper`_
  193. - `Tune paper`_
  194. *Older documents:*
  195. - `Ray paper`_
  196. - `Ray HotOS paper`_
  197. - `Blog (old)`_
  198. .. _`Documentation`: http://docs.ray.io/en/master/index.html
  199. .. _`Tutorial`: https://github.com/ray-project/tutorial
  200. .. _`Blog (old)`: https://ray-project.github.io/
  201. .. _`Blog`: https://medium.com/distributed-computing-with-ray
  202. .. _`Ray 1.0 Architecture whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
  203. .. _`Ray Design Patterns`: https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit
  204. .. _`Ray paper`: https://arxiv.org/abs/1712.05889
  205. .. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
  206. .. _`RLlib paper`: https://arxiv.org/abs/1712.09381
  207. .. _`RLlib flow paper`: https://arxiv.org/abs/2011.12719
  208. .. _`Tune paper`: https://arxiv.org/abs/1807.05118
  209. Getting Involved
  210. ----------------
  211. - `Forum`_: For discussions about development, questions about usage, and feature requests.
  212. - `GitHub Issues`_: For reporting bugs.
  213. - `Twitter`_: Follow updates on Twitter.
  214. - `Meetup Group`_: Join our meetup group.
  215. - `StackOverflow`_: For questions about how to use Ray.
  216. .. _`Forum`: https://discuss.ray.io/
  217. .. _`GitHub Issues`: https://github.com/ray-project/ray/issues
  218. .. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
  219. .. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/
  220. .. _`Twitter`: https://twitter.com/raydistributed