convtranspose2d_stack.py 3.1 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. from typing import Tuple
  2. from ray.rllib.models.torch.misc import Reshape
  3. from ray.rllib.models.utils import get_activation_fn, get_initializer
  4. from ray.rllib.utils.framework import try_import_torch
  5. torch, nn = try_import_torch()
  6. if torch:
  7. import torch.distributions as td
  8. class ConvTranspose2DStack(nn.Module):
  9. """ConvTranspose2D decoder generating an image distribution from a vector.
  10. """
  11. def __init__(self,
  12. *,
  13. input_size: int,
  14. filters: Tuple[Tuple[int]] = ((1024, 5, 2), (128, 5, 2),
  15. (64, 6, 2), (32, 6, 2)),
  16. initializer="default",
  17. bias_init=0,
  18. activation_fn: str = "relu",
  19. output_shape: Tuple[int] = (3, 64, 64)):
  20. """Initializes a TransposedConv2DStack instance.
  21. Args:
  22. input_size (int): The size of the 1D input vector, from which to
  23. generate the image distribution.
  24. filters (Tuple[Tuple[int]]): Tuple of filter setups (1 for each
  25. ConvTranspose2D layer): [in_channels, kernel, stride].
  26. initializer (Union[str]):
  27. bias_init (float): The initial bias values to use.
  28. activation_fn (str): Activation function descriptor (str).
  29. output_shape (Tuple[int]): Shape of the final output image.
  30. """
  31. super().__init__()
  32. self.activation = get_activation_fn(activation_fn, framework="torch")
  33. self.output_shape = output_shape
  34. initializer = get_initializer(initializer, framework="torch")
  35. in_channels = filters[0][0]
  36. self.layers = [
  37. # Map from 1D-input vector to correct initial size for the
  38. # Conv2DTransposed stack.
  39. nn.Linear(input_size, in_channels),
  40. # Reshape from the incoming 1D vector (input_size) to 1x1 image
  41. # format (channels first).
  42. Reshape([-1, in_channels, 1, 1]),
  43. ]
  44. for i, (_, kernel, stride) in enumerate(filters):
  45. out_channels = filters[i + 1][0] if i < len(filters) - 1 else \
  46. output_shape[0]
  47. conv_transp = nn.ConvTranspose2d(in_channels, out_channels, kernel,
  48. stride)
  49. # Apply initializer.
  50. initializer(conv_transp.weight)
  51. nn.init.constant_(conv_transp.bias, bias_init)
  52. self.layers.append(conv_transp)
  53. # Apply activation function, if provided and if not last layer.
  54. if self.activation is not None and i < len(filters) - 1:
  55. self.layers.append(self.activation())
  56. # num-outputs == num-inputs for next layer.
  57. in_channels = out_channels
  58. self._model = nn.Sequential(*self.layers)
  59. def forward(self, x):
  60. # x is [batch, hor_length, input_size]
  61. batch_dims = x.shape[:-1]
  62. model_out = self._model(x)
  63. # Equivalent to making a multivariate diag.
  64. reshape_size = batch_dims + self.output_shape
  65. mean = model_out.view(*reshape_size)
  66. return td.Independent(td.Normal(mean, 1.0), len(self.output_shape))