import numpy as np import tree # pip install dm_tree from typing import List, Optional from ray.rllib.utils.deprecation import DEPRECATED_VALUE, deprecation_warning from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.typing import TensorType, TensorStructType, Union tf1, tf, tfv = try_import_tf() torch, _ = try_import_torch() SMALL_NUMBER = 1e-6 # Some large int number. May be increased here, if needed. LARGE_INTEGER = 100000000 # Min and Max outputs (clipped) from an NN-output layer interpreted as the # log(x) of some x (e.g. a stddev of a normal # distribution). MIN_LOG_NN_OUTPUT = -5 MAX_LOG_NN_OUTPUT = 2 def aligned_array(size: int, dtype, align: int = 64) -> np.ndarray: """Returns an array of a given size that is 64-byte aligned. The returned array can be efficiently copied into GPU memory by TensorFlow. Args: size: The size (total number of items) of the array. For example, array([[0.0, 1.0], [2.0, 3.0]]) would have size=4. dtype: The numpy dtype of the array. align: The alignment to use. Returns: A np.ndarray with the given specifications. """ n = size * dtype.itemsize empty = np.empty(n + (align - 1), dtype=np.uint8) data_align = empty.ctypes.data % align offset = 0 if data_align == 0 else (align - data_align) if n == 0: # stop np from optimising out empty slice reference output = empty[offset:offset + 1][0:0].view(dtype) else: output = empty[offset:offset + n].view(dtype) assert len(output) == size, len(output) assert output.ctypes.data % align == 0, output.ctypes.data return output def concat_aligned(items: List[np.ndarray], time_major: Optional[bool] = None) -> np.ndarray: """Concatenate arrays, ensuring the output is 64-byte aligned. We only align float arrays; other arrays are concatenated as normal. This should be used instead of np.concatenate() to improve performance when the output array is likely to be fed into TensorFlow. Args: items: The list of items to concatenate and align. time_major: Whether the data in items is time-major, in which case, we will concatenate along axis=1. Returns: The concat'd and aligned array. """ if len(items) == 0: return [] elif len(items) == 1: # we assume the input is aligned. In any case, it doesn't help # performance to force align it since that incurs a needless copy. return items[0] elif (isinstance(items[0], np.ndarray) and items[0].dtype in [np.float32, np.float64, np.uint8]): dtype = items[0].dtype flat = aligned_array(sum(s.size for s in items), dtype) if time_major is not None: if time_major is True: batch_dim = sum(s.shape[1] for s in items) new_shape = ( items[0].shape[0], batch_dim, ) + items[0].shape[2:] else: batch_dim = sum(s.shape[0] for s in items) new_shape = ( batch_dim, items[0].shape[1], ) + items[0].shape[2:] else: batch_dim = sum(s.shape[0] for s in items) new_shape = (batch_dim, ) + items[0].shape[1:] output = flat.reshape(new_shape) assert output.ctypes.data % 64 == 0, output.ctypes.data np.concatenate(items, out=output, axis=1 if time_major else 0) return output else: return np.concatenate(items, axis=1 if time_major else 0) def convert_to_numpy(x: TensorStructType, reduce_type: bool = True, reduce_floats=DEPRECATED_VALUE): """Converts values in `stats` to non-Tensor numpy or python types. Args: x: Any (possibly nested) struct, the values in which will be converted and returned as a new struct with all torch/tf tensors being converted to numpy types. reduce_type: Whether to automatically reduce all float64 and int64 data into float32 and int32 data, respectively. Returns: A new struct with the same structure as `x`, but with all values converted to numpy arrays (on CPU). """ if reduce_floats != DEPRECATED_VALUE: deprecation_warning( old="reduce_floats", new="reduce_types", error=False) reduce_type = reduce_floats # The mapping function used to numpyize torch/tf Tensors (and move them # to the CPU beforehand). def mapping(item): if torch and isinstance(item, torch.Tensor): ret = item.cpu().item() if len(item.size()) == 0 else \ item.detach().cpu().numpy() elif tf and isinstance(item, (tf.Tensor, tf.Variable)) and \ hasattr(item, "numpy"): assert tf.executing_eagerly() ret = item.numpy() else: ret = item if reduce_type and isinstance(ret, np.ndarray): if np.issubdtype(ret.dtype, np.floating): ret = ret.astype(np.float32) elif np.issubdtype(ret.dtype, int): ret = ret.astype(np.int32) return ret return ret return tree.map_structure(mapping, x) def fc(x: np.ndarray, weights: np.ndarray, biases: Optional[np.ndarray] = None, framework: Optional[str] = None) -> np.ndarray: """Calculates FC (dense) layer outputs given weights/biases and input. Args: x: The input to the dense layer. weights: The weights matrix. biases: The biases vector. All 0s if None. framework: An optional framework hint (to figure out, e.g. whether to transpose torch weight matrices). Returns: The dense layer's output. """ def map_(data, transpose=False): if torch: if isinstance(data, torch.Tensor): data = data.cpu().detach().numpy() if tf and tf.executing_eagerly(): if isinstance(data, tf.Variable): data = data.numpy() if transpose: data = np.transpose(data) return data x = map_(x) # Torch stores matrices in transpose (faster for backprop). transpose = (framework == "torch" and (x.shape[1] != weights.shape[0] and x.shape[1] == weights.shape[1])) weights = map_(weights, transpose=transpose) biases = map_(biases) return np.matmul(x, weights) + (0.0 if biases is None else biases) def huber_loss(x: np.ndarray, delta: float = 1.0) -> np.ndarray: """Reference: https://en.wikipedia.org/wiki/Huber_loss.""" return np.where( np.abs(x) < delta, np.power(x, 2.0) * 0.5, delta * (np.abs(x) - 0.5 * delta)) def l2_loss(x: np.ndarray) -> np.ndarray: """Computes half the L2 norm of a tensor (w/o the sqrt): sum(x**2) / 2. Args: x: The input tensor. Returns: The l2-loss output according to the above formula given `x`. """ return np.sum(np.square(x)) / 2.0 def lstm(x, weights: np.ndarray, biases: Optional[np.ndarray] = None, initial_internal_states: Optional[np.ndarray] = None, time_major: bool = False, forget_bias: float = 1.0): """Calculates LSTM layer output given weights/biases, states, and input. Args: x: The inputs to the LSTM layer including time-rank (0th if time-major, else 1st) and the batch-rank (1st if time-major, else 0th). weights: The weights matrix. biases: The biases vector. All 0s if None. initial_internal_states: The initial internal states to pass into the layer. All 0s if None. time_major: Whether to use time-major or not. Default: False. forget_bias: Gets added to first sigmoid (forget gate) output. Default: 1.0. Returns: Tuple consisting of 1) The LSTM layer's output and 2) Tuple: Last (c-state, h-state). """ sequence_length = x.shape[0 if time_major else 1] batch_size = x.shape[1 if time_major else 0] units = weights.shape[1] // 4 # 4 internal layers (3x sigmoid, 1x tanh) if initial_internal_states is None: c_states = np.zeros(shape=(batch_size, units)) h_states = np.zeros(shape=(batch_size, units)) else: c_states = initial_internal_states[0] h_states = initial_internal_states[1] # Create a placeholder for all n-time step outputs. if time_major: unrolled_outputs = np.zeros(shape=(sequence_length, batch_size, units)) else: unrolled_outputs = np.zeros(shape=(batch_size, sequence_length, units)) # Push the batch 4 times through the LSTM cell and capture the outputs plus # the final h- and c-states. for t in range(sequence_length): input_matrix = x[t, :, :] if time_major else x[:, t, :] input_matrix = np.concatenate((input_matrix, h_states), axis=1) input_matmul_matrix = np.matmul(input_matrix, weights) + biases # Forget gate (3rd slot in tf output matrix). Add static forget bias. sigmoid_1 = sigmoid(input_matmul_matrix[:, units * 2:units * 3] + forget_bias) c_states = np.multiply(c_states, sigmoid_1) # Add gate (1st and 2nd slots in tf output matrix). sigmoid_2 = sigmoid(input_matmul_matrix[:, 0:units]) tanh_3 = np.tanh(input_matmul_matrix[:, units:units * 2]) c_states = np.add(c_states, np.multiply(sigmoid_2, tanh_3)) # Output gate (last slot in tf output matrix). sigmoid_4 = sigmoid(input_matmul_matrix[:, units * 3:units * 4]) h_states = np.multiply(sigmoid_4, np.tanh(c_states)) # Store this output time-slice. if time_major: unrolled_outputs[t, :, :] = h_states else: unrolled_outputs[:, t, :] = h_states return unrolled_outputs, (c_states, h_states) def one_hot(x: Union[TensorType, int], depth: int = 0, on_value: int = 1.0, off_value: float = 0.0) -> np.ndarray: """One-hot utility function for numpy. Thanks to qianyizhang: https://gist.github.com/qianyizhang/07ee1c15cad08afb03f5de69349efc30. Args: x: The input to be one-hot encoded. depth: The max. number to be one-hot encoded (size of last rank). on_value: The value to use for on. Default: 1.0. off_value: The value to use for off. Default: 0.0. Returns: The one-hot encoded equivalent of the input array. """ # Handle simple ints properly. if isinstance(x, int): x = np.array(x, dtype=np.int32) # Handle torch arrays properly. elif torch and isinstance(x, torch.Tensor): x = x.numpy() # Handle bool arrays correctly. if x.dtype == np.bool_: x = x.astype(np.int) depth = 2 # If depth is not given, try to infer it from the values in the array. if depth == 0: depth = np.max(x) + 1 assert np.max(x) < depth, \ "ERROR: The max. index of `x` ({}) is larger than depth ({})!".\ format(np.max(x), depth) shape = x.shape # Python 2.7 compatibility, (*shape, depth) is not allowed. shape_list = list(shape[:]) shape_list.append(depth) out = np.ones(shape_list) * off_value indices = [] for i in range(x.ndim): tiles = [1] * x.ndim s = [1] * x.ndim s[i] = -1 r = np.arange(shape[i]).reshape(s) if i > 0: tiles[i - 1] = shape[i - 1] r = np.tile(r, tiles) indices.append(r) indices.append(x) out[tuple(indices)] = on_value return out def relu(x: np.ndarray, alpha: float = 0.0) -> np.ndarray: """Implementation of the leaky ReLU function. y = x * alpha if x < 0 else x Args: x: The input values. alpha: A scaling ("leak") factor to use for negative x. Returns: The leaky ReLU output for x. """ return np.maximum(x, x * alpha, x) def sigmoid(x: np.ndarray, derivative: bool = False) -> np.ndarray: """ Returns the sigmoid function applied to x. Alternatively, can return the derivative or the sigmoid function. Args: x: The input to the sigmoid function. derivative: Whether to return the derivative or not. Default: False. Returns: The sigmoid function (or its derivative) applied to x. """ if derivative: return x * (1 - x) else: return 1 / (1 + np.exp(-x)) def softmax(x: np.ndarray, axis: int = -1, epsilon: Optional[float] = None) -> np.ndarray: """Returns the softmax values for x. The exact formula used is: S(xi) = e^xi / SUMj(e^xj), where j goes over all elements in x. Args: x: The input to the softmax function. axis: The axis along which to softmax. epsilon: Optional epsilon as a minimum value. If None, use `SMALL_NUMBER`. Returns: The softmax over x. """ epsilon = epsilon or SMALL_NUMBER # x_exp = np.maximum(np.exp(x), SMALL_NUMBER) x_exp = np.exp(x) # return x_exp / # np.maximum(np.sum(x_exp, axis, keepdims=True), SMALL_NUMBER) return np.maximum(x_exp / np.sum(x_exp, axis, keepdims=True), epsilon)