"""Example of handling variable length and/or parametric action spaces. This is a toy example of the action-embedding based approach for handling large discrete action spaces (potentially infinite in size), similar to this: https://neuro.cs.ut.ee/the-use-of-embeddings-in-openai-five/ This currently works with RLlib's policy gradient style algorithms (e.g., PG, PPO, IMPALA, A2C) and also DQN. Note that since the model outputs now include "-inf" tf.float32.min values, not all algorithm options are supported at the moment. For example, algorithms might crash if they don't properly ignore the -inf action scores. Working configurations are given below. """ import argparse import os import ray from ray import tune from ray.rllib.examples.env.parametric_actions_cartpole import \ ParametricActionsCartPole from ray.rllib.examples.models.parametric_actions_model import \ ParametricActionsModel, TorchParametricActionsModel from ray.rllib.models import ModelCatalog from ray.rllib.utils.test_utils import check_learning_achieved from ray.tune.registry import register_env parser = argparse.ArgumentParser() parser.add_argument( "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use.") parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.") parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train.") parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train.") parser.add_argument( "--stop-reward", type=float, default=150.0, help="Reward at which we stop training.") if __name__ == "__main__": args = parser.parse_args() ray.init() register_env("pa_cartpole", lambda _: ParametricActionsCartPole(10)) ModelCatalog.register_custom_model( "pa_model", TorchParametricActionsModel if args.framework == "torch" else ParametricActionsModel) if args.run == "DQN": cfg = { # TODO(ekl) we need to set these to prevent the masked values # from being further processed in DistributionalQModel, which # would mess up the masking. It is possible to support these if we # defined a custom DistributionalQModel that is aware of masking. "hiddens": [], "dueling": False, } else: cfg = {} config = dict( { "env": "pa_cartpole", "model": { "custom_model": "pa_model", }, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "num_workers": 0, "framework": args.framework, }, **cfg) stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, } results = tune.run(args.run, stop=stop, config=config, verbose=1) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()