"""Simple example of setting up a multi-agent policy mapping. Control the number of agents and policies via --num-agents and --num-policies. This works with hundreds of agents and policies, but note that initializing many TF policies will take some time. Also, TF evals might slow down with large numbers of policies. To debug TF execution, set the TF_TIMELINE_DIR environment variable. """ import argparse import os import random import ray from ray import tune from ray.rllib.examples.env.multi_agent import MultiAgentCartPole from ray.rllib.examples.models.shared_weights_model import \ SharedWeightsModel1, SharedWeightsModel2, TF2SharedWeightsModel, \ TorchSharedWeightsModel from ray.rllib.models import ModelCatalog from ray.rllib.policy.policy import PolicySpec from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check_learning_achieved tf1, tf, tfv = try_import_tf() parser = argparse.ArgumentParser() parser.add_argument("--num-agents", type=int, default=4) parser.add_argument("--num-policies", type=int, default=2) parser.add_argument("--num-cpus", type=int, default=0) parser.add_argument( "--framework", choices=["tf", "tf2", "tfe", "torch"], default="tf", help="The DL framework specifier.") parser.add_argument( "--as-test", action="store_true", help="Whether this script should be run as a test: --stop-reward must " "be achieved within --stop-timesteps AND --stop-iters.") parser.add_argument( "--stop-iters", type=int, default=200, help="Number of iterations to train.") parser.add_argument( "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train.") parser.add_argument( "--stop-reward", type=float, default=150.0, help="Reward at which we stop training.") if __name__ == "__main__": args = parser.parse_args() ray.init(num_cpus=args.num_cpus or None) # Register the models to use. if args.framework == "torch": mod1 = mod2 = TorchSharedWeightsModel elif args.framework in ["tfe", "tf2"]: mod1 = mod2 = TF2SharedWeightsModel else: mod1 = SharedWeightsModel1 mod2 = SharedWeightsModel2 ModelCatalog.register_custom_model("model1", mod1) ModelCatalog.register_custom_model("model2", mod2) # Each policy can have a different configuration (including custom model). def gen_policy(i): config = { "model": { "custom_model": ["model1", "model2"][i % 2], }, "gamma": random.choice([0.95, 0.99]), } return PolicySpec(config=config) # Setup PPO with an ensemble of `num_policies` different policies. policies = { "policy_{}".format(i): gen_policy(i) for i in range(args.num_policies) } policy_ids = list(policies.keys()) def policy_mapping_fn(agent_id, episode, worker, **kwargs): pol_id = random.choice(policy_ids) return pol_id config = { "env": MultiAgentCartPole, "env_config": { "num_agents": args.num_agents, }, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "num_sgd_iter": 10, "multiagent": { "policies": policies, "policy_mapping_fn": policy_mapping_fn, }, "framework": args.framework, } stop = { "episode_reward_mean": args.stop_reward, "timesteps_total": args.stop_timesteps, "training_iteration": args.stop_iters, } results = tune.run("PPO", stop=stop, config=config, verbose=1) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()