"""Tensorflow model for DQN""" from typing import List import gym from ray.rllib.models.tf.layers import NoisyLayer from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.typing import ModelConfigDict, TensorType tf1, tf, tfv = try_import_tf() class DistributionalQTFModel(TFModelV2): """Extension of standard TFModel to provide distributional Q values. It also supports options for noisy nets and parameter space noise. Data flow: obs -> forward() -> model_out model_out -> get_q_value_distributions() -> Q(s, a) atoms model_out -> get_state_value() -> V(s) Note that this class by itself is not a valid model unless you implement forward() in a subclass.""" def __init__( self, obs_space: gym.spaces.Space, action_space: gym.spaces.Space, num_outputs: int, model_config: ModelConfigDict, name: str, q_hiddens=(256, ), dueling: bool = False, num_atoms: int = 1, use_noisy: bool = False, v_min: float = -10.0, v_max: float = 10.0, sigma0: float = 0.5, # TODO(sven): Move `add_layer_norm` into ModelCatalog as # generic option, then error if we use ParameterNoise as # Exploration type and do not have any LayerNorm layers in # the net. add_layer_norm: bool = False): """Initialize variables of this model. Extra model kwargs: q_hiddens (List[int]): List of layer-sizes after(!) the Advantages(A)/Value(V)-split. Hence, each of the A- and V- branches will have this structure of Dense layers. To define the NN before this A/V-split, use - as always - config["model"]["fcnet_hiddens"]. dueling (bool): Whether to build the advantage(A)/value(V) heads for DDQN. If True, Q-values are calculated as: Q = (A - mean[A]) + V. If False, raw NN output is interpreted as Q-values. num_atoms (int): If >1, enables distributional DQN. use_noisy (bool): Use noisy nets. v_min (float): Min value support for distributional DQN. v_max (float): Max value support for distributional DQN. sigma0 (float): Initial value of noisy layers. add_layer_norm (bool): Enable layer norm (for param noise). Note that the core layers for forward() are not defined here, this only defines the layers for the Q head. Those layers for forward() should be defined in subclasses of DistributionalQModel. """ super(DistributionalQTFModel, self).__init__( obs_space, action_space, num_outputs, model_config, name) # setup the Q head output (i.e., model for get_q_values) self.model_out = tf.keras.layers.Input( shape=(num_outputs, ), name="model_out") def build_action_value(prefix: str, model_out: TensorType) -> List[TensorType]: if q_hiddens: action_out = model_out for i in range(len(q_hiddens)): if use_noisy: action_out = NoisyLayer( "{}hidden_{}".format(prefix, i), q_hiddens[i], sigma0)(action_out) elif add_layer_norm: action_out = tf.keras.layers.Dense( units=q_hiddens[i], activation=tf.nn.relu)(action_out) action_out = \ tf.keras.layers.LayerNormalization()( action_out) else: action_out = tf.keras.layers.Dense( units=q_hiddens[i], activation=tf.nn.relu, name="hidden_%d" % i)(action_out) else: # Avoid postprocessing the outputs. This enables custom models # to be used for parametric action DQN. action_out = model_out if use_noisy: action_scores = NoisyLayer( "{}output".format(prefix), self.action_space.n * num_atoms, sigma0, activation=None)(action_out) elif q_hiddens: action_scores = tf.keras.layers.Dense( units=self.action_space.n * num_atoms, activation=None)(action_out) else: action_scores = model_out if num_atoms > 1: # Distributional Q-learning uses a discrete support z # to represent the action value distribution z = tf.range(num_atoms, dtype=tf.float32) z = v_min + z * (v_max - v_min) / float(num_atoms - 1) def _layer(x): support_logits_per_action = tf.reshape( tensor=x, shape=(-1, self.action_space.n, num_atoms)) support_prob_per_action = tf.nn.softmax( logits=support_logits_per_action) x = tf.reduce_sum( input_tensor=z * support_prob_per_action, axis=-1) logits = support_logits_per_action dist = support_prob_per_action return [x, z, support_logits_per_action, logits, dist] return tf.keras.layers.Lambda(_layer)(action_scores) else: logits = tf.expand_dims(tf.ones_like(action_scores), -1) dist = tf.expand_dims(tf.ones_like(action_scores), -1) return [action_scores, logits, dist] def build_state_score(prefix: str, model_out: TensorType) -> TensorType: state_out = model_out for i in range(len(q_hiddens)): if use_noisy: state_out = NoisyLayer( "{}dueling_hidden_{}".format(prefix, i), q_hiddens[i], sigma0)(state_out) else: state_out = tf.keras.layers.Dense( units=q_hiddens[i], activation=tf.nn.relu)(state_out) if add_layer_norm: state_out = tf.keras.layers.LayerNormalization()( state_out) if use_noisy: state_score = NoisyLayer( "{}dueling_output".format(prefix), num_atoms, sigma0, activation=None)(state_out) else: state_score = tf.keras.layers.Dense( units=num_atoms, activation=None)(state_out) return state_score q_out = build_action_value(name + "/action_value/", self.model_out) self.q_value_head = tf.keras.Model(self.model_out, q_out) if dueling: state_out = build_state_score(name + "/state_value/", self.model_out) self.state_value_head = tf.keras.Model(self.model_out, state_out) def get_q_value_distributions(self, model_out: TensorType) -> List[TensorType]: """Returns distributional values for Q(s, a) given a state embedding. Override this in your custom model to customize the Q output head. Args: model_out (Tensor): embedding from the model layers Returns: (action_scores, logits, dist) if num_atoms == 1, otherwise (action_scores, z, support_logits_per_action, logits, dist) """ return self.q_value_head(model_out) def get_state_value(self, model_out: TensorType) -> TensorType: """Returns the state value prediction for the given state embedding.""" return self.state_value_head(model_out)