Debugging and Profiling ======================= Observing Ray Work ------------------ You can run ``ray stack`` to dump the stack traces of all Ray workers on the current node. This requires ``py-spy`` to be installed. See the `Troubleshooting page `_ for more details. Visualizing Tasks in the Ray Timeline ------------------------------------- The most important tool is the timeline visualization tool. To visualize tasks in the Ray timeline, you can dump the timeline as a JSON file by running ``ray timeline`` from the command line or by using the following command. .. code-block:: python ray.timeline(filename="/tmp/timeline.json") Then open `chrome://tracing`_ in the Chrome web browser, and load ``timeline.json``. .. _`chrome://tracing`: chrome://tracing Profiling Using Python's CProfile --------------------------------- A second way to profile the performance of your Ray application is to use Python's native cProfile `profiling module`_. Rather than tracking line-by-line of your application code, cProfile can give the total runtime of each loop function, as well as list the number of calls made and execution time of all function calls made within the profiled code. .. _`profiling module`: https://docs.python.org/3/library/profile.html#module-cProfile Unlike ``line_profiler`` above, this detailed list of profiled function calls **includes** internal function calls and function calls made within Ray! However, similar to ``line_profiler``, cProfile can be enabled with minimal changes to your application code (given that each section of the code you want to profile is defined as its own function). To use cProfile, add an import statement, then replace calls to the loop functions as follows: .. code-block:: python import cProfile # Added import statement def ex1(): list1 = [] for i in range(5): list1.append(ray.get(func.remote())) def main(): ray.init() cProfile.run('ex1()') # Modified call to ex1 cProfile.run('ex2()') cProfile.run('ex3()') if __name__ == "__main__": main() Now, when executing your Python script, a cProfile list of profiled function calls will be outputted to terminal for each call made to ``cProfile.run()``. At the very top of cProfile's output gives the total execution time for ``'ex1()'``: .. code-block:: bash 601 function calls (595 primitive calls) in 2.509 seconds Following is a snippet of profiled function calls for ``'ex1()'``. Most of these calls are quick and take around 0.000 seconds, so the functions of interest are the ones with non-zero execution times: .. code-block:: bash ncalls tottime percall cumtime percall filename:lineno(function) ... 1 0.000 0.000 2.509 2.509 your_script_here.py:31(ex1) 5 0.000 0.000 0.001 0.000 remote_function.py:103(remote) 5 0.000 0.000 0.001 0.000 remote_function.py:107(_remote) ... 10 0.000 0.000 0.000 0.000 worker.py:2459(__init__) 5 0.000 0.000 2.508 0.502 worker.py:2535(get) 5 0.000 0.000 0.000 0.000 worker.py:2695(get_global_worker) 10 0.000 0.000 2.507 0.251 worker.py:374(retrieve_and_deserialize) 5 0.000 0.000 2.508 0.502 worker.py:424(get_object) 5 0.000 0.000 0.000 0.000 worker.py:514(submit_task) ... The 5 separate calls to Ray's ``get``, taking the full 0.502 seconds each call, can be noticed at ``worker.py:2535(get)``. Meanwhile, the act of calling the remote function itself at ``remote_function.py:103(remote)`` only takes 0.001 seconds over 5 calls, and thus is not the source of the slow performance of ``ex1()``. Profiling Ray Actors with cProfile ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Considering that the detailed output of cProfile can be quite different depending on what Ray functionalities we use, let us see what cProfile's output might look like if our example involved Actors (for an introduction to Ray actors, see our `Actor documentation here`_). .. _`Actor documentation here`: http://docs.ray.io/en/master/actors.html Now, instead of looping over five calls to a remote function like in ``ex1``, let's create a new example and loop over five calls to a remote function **inside an actor**. Our actor's remote function again just sleeps for 0.5 seconds: .. code-block:: python # Our actor @ray.remote class Sleeper(object): def __init__(self): self.sleepValue = 0.5 # Equivalent to func(), but defined within an actor def actor_func(self): time.sleep(self.sleepValue) Recalling the suboptimality of ``ex1``, let's first see what happens if we attempt to perform all five ``actor_func()`` calls within a single actor: .. code-block:: python def ex4(): # This is suboptimal in Ray, and should only be used for the sake of this example actor_example = Sleeper.remote() five_results = [] for i in range(5): five_results.append(actor_example.actor_func.remote()) # Wait until the end to call ray.get() ray.get(five_results) We enable cProfile on this example as follows: .. code-block:: python def main(): ray.init() cProfile.run('ex4()') if __name__ == "__main__": main() Running our new Actor example, cProfile's abbreviated output is as follows: .. code-block:: bash 12519 function calls (11956 primitive calls) in 2.525 seconds ncalls tottime percall cumtime percall filename:lineno(function) ... 1 0.000 0.000 0.015 0.015 actor.py:546(remote) 1 0.000 0.000 0.015 0.015 actor.py:560(_remote) 1 0.000 0.000 0.000 0.000 actor.py:697(__init__) ... 1 0.000 0.000 2.525 2.525 your_script_here.py:63(ex4) ... 9 0.000 0.000 0.000 0.000 worker.py:2459(__init__) 1 0.000 0.000 2.509 2.509 worker.py:2535(get) 9 0.000 0.000 0.000 0.000 worker.py:2695(get_global_worker) 4 0.000 0.000 2.508 0.627 worker.py:374(retrieve_and_deserialize) 1 0.000 0.000 2.509 2.509 worker.py:424(get_object) 8 0.000 0.000 0.001 0.000 worker.py:514(submit_task) ... It turns out that the entire example still took 2.5 seconds to execute, or the time for five calls to ``actor_func()`` to run in serial. We remember in ``ex1`` that this behavior was because we did not wait until after submitting all five remote function tasks to call ``ray.get()``, but we can verify on cProfile's output line ``worker.py:2535(get)`` that ``ray.get()`` was only called once at the end, for 2.509 seconds. What happened? It turns out Ray cannot parallelize this example, because we have only initialized a single ``Sleeper`` actor. Because each actor is a single, stateful worker, our entire code is submitted and ran on a single worker the whole time. To better parallelize the actors in ``ex4``, we can take advantage that each call to ``actor_func()`` is independent, and instead create five ``Sleeper`` actors. That way, we are creating five workers that can run in parallel, instead of creating a single worker that can only handle one call to ``actor_func()`` at a time. .. code-block:: python def ex4(): # Modified to create five separate Sleepers five_actors = [Sleeper.remote() for i in range(5)] # Each call to actor_func now goes to a different Sleeper five_results = [] for actor_example in five_actors: five_results.append(actor_example.actor_func.remote()) ray.get(five_results) Our example in total now takes only 1.5 seconds to run: .. code-block:: bash 1378 function calls (1363 primitive calls) in 1.567 seconds ncalls tottime percall cumtime percall filename:lineno(function) ... 5 0.000 0.000 0.002 0.000 actor.py:546(remote) 5 0.000 0.000 0.002 0.000 actor.py:560(_remote) 5 0.000 0.000 0.000 0.000 actor.py:697(__init__) ... 1 0.000 0.000 1.566 1.566 your_script_here.py:71(ex4) ... 21 0.000 0.000 0.000 0.000 worker.py:2459(__init__) 1 0.000 0.000 1.564 1.564 worker.py:2535(get) 25 0.000 0.000 0.000 0.000 worker.py:2695(get_global_worker) 3 0.000 0.000 1.564 0.521 worker.py:374(retrieve_and_deserialize) 1 0.000 0.000 1.564 1.564 worker.py:424(get_object) 20 0.001 0.000 0.001 0.000 worker.py:514(submit_task) ... This document discusses some common problems that people run into when using Ray as well as some known problems. If you encounter other problems, please `let us know`_. .. _`let us know`: https://github.com/ray-project/ray/issues Crashes ------- If Ray crashed, you may wonder what happened. Currently, this can occur for some of the following reasons. - **Stressful workloads:** Workloads that create many many tasks in a short amount of time can sometimes interfere with the heartbeat mechanism that we use to check that processes are still alive. On the head node in the cluster, you can check the files ``/tmp/ray/session_*/logs/monitor*``. They will indicate which processes Ray has marked as dead (due to a lack of heartbeats). However, it is currently possible for a process to get marked as dead without actually having died. - **Starting many actors:** Workloads that start a large number of actors all at once may exhibit problems when the processes (or libraries that they use) contend for resources. Similarly, a script that starts many actors over the lifetime of the application will eventually cause the system to run out of file descriptors. This is addressable, but currently we do not garbage collect actor processes until the script finishes. - **Running out of file descriptors:** As a workaround, you may be able to increase the maximum number of file descriptors with a command like ``ulimit -n 65536``. If that fails, double check that the hard limit is sufficiently large by running ``ulimit -Hn``. If it is too small, you can increase the hard limit as follows (these instructions work on EC2). * Increase the hard ulimit for open file descriptors system-wide by running the following. .. code-block:: bash sudo bash -c "echo $USER hard nofile 65536 >> /etc/security/limits.conf" * Logout and log back in. No Speedup ---------- You just ran an application using Ray, but it wasn't as fast as you expected it to be. Or worse, perhaps it was slower than the serial version of the application! The most common reasons are the following. - **Number of cores:** How many cores is Ray using? When you start Ray, it will determine the number of CPUs on each machine with ``psutil.cpu_count()``. Ray usually will not schedule more tasks in parallel than the number of CPUs. So if the number of CPUs is 4, the most you should expect is a 4x speedup. - **Physical versus logical CPUs:** Do the machines you're running on have fewer **physical** cores than **logical** cores? You can check the number of logical cores with ``psutil.cpu_count()`` and the number of physical cores with ``psutil.cpu_count(logical=False)``. This is common on a lot of machines and especially on EC2. For many workloads (especially numerical workloads), you often cannot expect a greater speedup than the number of physical CPUs. - **Small tasks:** Are your tasks very small? Ray introduces some overhead for each task (the amount of overhead depends on the arguments that are passed in). You will be unlikely to see speedups if your tasks take less than ten milliseconds. For many workloads, you can easily increase the sizes of your tasks by batching them together. - **Variable durations:** Do your tasks have variable duration? If you run 10 tasks with variable duration in parallel, you shouldn't expect an N-fold speedup (because you'll end up waiting for the slowest task). In this case, consider using ``ray.wait`` to begin processing tasks that finish first. - **Multi-threaded libraries:** Are all of your tasks attempting to use all of the cores on the machine? If so, they are likely to experience contention and prevent your application from achieving a speedup. This is very common with some versions of ``numpy``, and in that case can usually be setting an environment variable like ``MKL_NUM_THREADS`` (or the equivalent depending on your installation) to ``1``. For many - but not all - libraries, you can diagnose this by opening ``top`` while your application is running. If one process is using most of the CPUs, and the others are using a small amount, this may be the problem. The most common exception is PyTorch, which will appear to be using all the cores despite needing ``torch.set_num_threads(1)`` to be called to avoid contention. If you are still experiencing a slowdown, but none of the above problems apply, we'd really like to know! Please create a `GitHub issue`_ and consider submitting a minimal code example that demonstrates the problem. .. _`Github issue`: https://github.com/ray-project/ray/issues Outdated Function Definitions ----------------------------- Due to subtleties of Python, if you redefine a remote function, you may not always get the expected behavior. In this case, it may be that Ray is not running the newest version of the function. Suppose you define a remote function ``f`` and then redefine it. Ray should use the newest version. .. code-block:: python @ray.remote def f(): return 1 @ray.remote def f(): return 2 ray.get(f.remote()) # This should be 2. However, the following are cases where modifying the remote function will not update Ray to the new version (at least without stopping and restarting Ray). - **The function is imported from an external file:** In this case, ``f`` is defined in some external file ``file.py``. If you ``import file``, change the definition of ``f`` in ``file.py``, then re-``import file``, the function ``f`` will not be updated. This is because the second import gets ignored as a no-op, so ``f`` is still defined by the first import. A solution to this problem is to use ``reload(file)`` instead of a second ``import file``. Reloading causes the new definition of ``f`` to be re-executed, and exports it to the other machines. Note that in Python 3, you need to do ``from importlib import reload``. - **The function relies on a helper function from an external file:** In this case, ``f`` can be defined within your Ray application, but relies on a helper function ``h`` defined in some external file ``file.py``. If the definition of ``h`` gets changed in ``file.py``, redefining ``f`` will not update Ray to use the new version of ``h``. This is because when ``f`` first gets defined, its definition is shipped to all of the workers, and is unpickled. During unpickling, ``file.py`` gets imported in the workers. Then when ``f`` gets redefined, its definition is again shipped and unpickled in all of the workers. But since ``file.py`` has been imported in the workers already, it is treated as a second import and is ignored as a no-op. Unfortunately, reloading on the driver does not update ``h``, as the reload needs to happen on the worker. A solution to this problem is to redefine ``f`` to reload ``file.py`` before it calls ``h``. For example, if inside ``file.py`` you have .. code-block:: python def h(): return 1 And you define remote function ``f`` as .. code-block:: python @ray.remote def f(): return file.h() You can redefine ``f`` as follows. .. code-block:: python @ray.remote def f(): reload(file) return file.h() This forces the reload to happen on the workers as needed. Note that in Python 3, you need to do ``from importlib import reload``.