from ray.rllib.policy.policy import Policy, PolicyState from ray.rllib.policy.sample_batch import SampleBatch from ray.rllib.policy.torch_policy import TorchPolicy from ray.rllib.utils.annotations import DeveloperAPI, override from ray.rllib.utils.framework import try_import_torch from ray.rllib.utils.schedules import PiecewiseSchedule torch, nn = try_import_torch() @DeveloperAPI class LearningRateSchedule: """Mixin for TorchPolicy that adds a learning rate schedule.""" def __init__(self, lr, lr_schedule): self._lr_schedule = None # Disable any scheduling behavior related to learning if Learner API is active. # Schedules are handled by Learner class. if lr_schedule is None: self.cur_lr = lr else: self._lr_schedule = PiecewiseSchedule( lr_schedule, outside_value=lr_schedule[-1][-1], framework=None ) self.cur_lr = self._lr_schedule.value(0) @override(Policy) def on_global_var_update(self, global_vars): super().on_global_var_update(global_vars) if self._lr_schedule and not self.config.get("_enable_learner_api", False): self.cur_lr = self._lr_schedule.value(global_vars["timestep"]) for opt in self._optimizers: for p in opt.param_groups: p["lr"] = self.cur_lr @DeveloperAPI class EntropyCoeffSchedule: """Mixin for TorchPolicy that adds entropy coeff decay.""" def __init__(self, entropy_coeff, entropy_coeff_schedule): self._entropy_coeff_schedule = None # Disable any scheduling behavior related to learning if Learner API is active. # Schedules are handled by Learner class. if entropy_coeff_schedule is None or ( self.config.get("_enable_learner_api", False) ): self.entropy_coeff = entropy_coeff else: # Allows for custom schedule similar to lr_schedule format if isinstance(entropy_coeff_schedule, list): self._entropy_coeff_schedule = PiecewiseSchedule( entropy_coeff_schedule, outside_value=entropy_coeff_schedule[-1][-1], framework=None, ) else: # Implements previous version but enforces outside_value self._entropy_coeff_schedule = PiecewiseSchedule( [[0, entropy_coeff], [entropy_coeff_schedule, 0.0]], outside_value=0.0, framework=None, ) self.entropy_coeff = self._entropy_coeff_schedule.value(0) @override(Policy) def on_global_var_update(self, global_vars): super(EntropyCoeffSchedule, self).on_global_var_update(global_vars) if self._entropy_coeff_schedule is not None: self.entropy_coeff = self._entropy_coeff_schedule.value( global_vars["timestep"] ) @DeveloperAPI class KLCoeffMixin: """Assigns the `update_kl()` method to a TorchPolicy. This is used by Algorithms to update the KL coefficient after each learning step based on `config.kl_target` and the measured KL value (from the train_batch). """ def __init__(self, config): # The current KL value (as python float). self.kl_coeff = config["kl_coeff"] # Constant target value. self.kl_target = config["kl_target"] def update_kl(self, sampled_kl): # Update the current KL value based on the recently measured value. if sampled_kl > 2.0 * self.kl_target: self.kl_coeff *= 1.5 elif sampled_kl < 0.5 * self.kl_target: self.kl_coeff *= 0.5 # Return the current KL value. return self.kl_coeff @override(TorchPolicy) def get_state(self) -> PolicyState: state = super().get_state() # Add current kl-coeff value. state["current_kl_coeff"] = self.kl_coeff return state @override(TorchPolicy) def set_state(self, state: PolicyState) -> None: # Set current kl-coeff value first. self.kl_coeff = state.pop("current_kl_coeff", self.config["kl_coeff"]) # Call super's set_state with rest of the state dict. super().set_state(state) @DeveloperAPI class ValueNetworkMixin: """Assigns the `_value()` method to a TorchPolicy. This way, Policy can call `_value()` to get the current VF estimate on a single(!) observation (as done in `postprocess_trajectory_fn`). Note: When doing this, an actual forward pass is being performed. This is different from only calling `model.value_function()`, where the result of the most recent forward pass is being used to return an already calculated tensor. """ def __init__(self, config): # When doing GAE, we need the value function estimate on the # observation. if config.get("use_gae") or config.get("vtrace"): # Input dict is provided to us automatically via the Model's # requirements. It's a single-timestep (last one in trajectory) # input_dict. def value(**input_dict): input_dict = SampleBatch(input_dict) input_dict = self._lazy_tensor_dict(input_dict) model_out, _ = self.model(input_dict) # [0] = remove the batch dim. return self.model.value_function()[0].item() # When not doing GAE, we do not require the value function's output. else: def value(*args, **kwargs): return 0.0 self._value = value def extra_action_out(self, input_dict, state_batches, model, action_dist): """Defines extra fetches per action computation. Args: input_dict (Dict[str, TensorType]): The input dict used for the action computing forward pass. state_batches (List[TensorType]): List of state tensors (empty for non-RNNs). model (ModelV2): The Model object of the Policy. action_dist: The instantiated distribution object, resulting from the model's outputs and the given distribution class. Returns: Dict[str, TensorType]: Dict with extra tf fetches to perform per action computation. """ # Return value function outputs. VF estimates will hence be added to # the SampleBatches produced by the sampler(s) to generate the train # batches going into the loss function. return { SampleBatch.VF_PREDS: model.value_function(), } @DeveloperAPI class TargetNetworkMixin: """Mixin class adding a method for (soft) target net(s) synchronizations. - Adds the `update_target` method to the policy. Calling `update_target` updates all target Q-networks' weights from their respective "main" Q-networks, based on tau (smooth, partial updating). """ def __init__(self): # Hard initial update from Q-net(s) to target Q-net(s). tau = self.config.get("tau", 1.0) self.update_target(tau=tau) def update_target(self, tau=None): # Update_target_fn will be called periodically to copy Q network to # target Q network, using (soft) tau-synching. tau = tau or self.config.get("tau", 1.0) model_state_dict = self.model.state_dict() # Support partial (soft) synching. # If tau == 1.0: Full sync from Q-model to target Q-model. if self.config.get("_enable_rl_module_api", False): target_current_network_pairs = self.model.get_target_network_pairs() for target_network, current_network in target_current_network_pairs: current_state_dict = current_network.state_dict() new_state_dict = { k: tau * current_state_dict[k] + (1 - tau) * v for k, v in target_network.state_dict().items() } target_network.load_state_dict(new_state_dict) else: # Support partial (soft) synching. # If tau == 1.0: Full sync from Q-model to target Q-model. target_state_dict = next(iter(self.target_models.values())).state_dict() model_state_dict = { k: tau * model_state_dict[k] + (1 - tau) * v for k, v in target_state_dict.items() } for target in self.target_models.values(): target.load_state_dict(model_state_dict) @override(TorchPolicy) def set_weights(self, weights): # Makes sure that whenever we restore weights for this policy's # model, we sync the target network (from the main model) # at the same time. TorchPolicy.set_weights(self, weights) self.update_target()