"""Example on how to use a CQLTrainer to learn from an offline json file. Important node: Make sure that your offline data file contains only a single timestep per line to mimic the way SAC pulls samples from the buffer. Generate the offline json file by running an SAC algo until it reaches expert level on your command line. For example: $ cd ray $ rllib train -f rllib/tuned_examples/sac/pendulum-sac.yaml --no-ray-ui Also make sure that in the above SAC yaml file (pendulum-sac.yaml), you specify an additional "output" key with any path on your local file system. In that path, the offline json files will be written to. Use the generated file(s) as "input" in the CQL config below (`config["input"] = [list of your json files]`), then run this script. """ import numpy as np import os from ray.rllib.agents import cql as cql from ray.rllib.utils.framework import try_import_torch torch, _ = try_import_torch() if __name__ == "__main__": # See rllib/tuned_examples/cql/pendulum-cql.yaml for comparison. config = cql.CQL_DEFAULT_CONFIG.copy() config["num_workers"] = 0 # Run locally. config["horizon"] = 200 config["soft_horizon"] = True config["no_done_at_end"] = True config["n_step"] = 3 config["bc_iters"] = 0 config["clip_actions"] = False config["normalize_actions"] = True config["learning_starts"] = 256 config["rollout_fragment_length"] = 1 config["prioritized_replay"] = False config["tau"] = 0.005 config["target_entropy"] = "auto" config["Q_model"] = { "fcnet_hiddens": [256, 256], "fcnet_activation": "relu", } config["policy_model"] = { "fcnet_hiddens": [256, 256], "fcnet_activation": "relu", } config["optimization"] = { "actor_learning_rate": 3e-4, "critic_learning_rate": 3e-4, "entropy_learning_rate": 3e-4, } config["train_batch_size"] = 256 config["target_network_update_freq"] = 1 config["timesteps_per_iteration"] = 1000 data_file = "/path/to/my/json_file.json" print("data_file={} exists={}".format(data_file, os.path.isfile(data_file))) config["input"] = [data_file] config["log_level"] = "INFO" config["env"] = "Pendulum-v1" # Set up evaluation. config["evaluation_num_workers"] = 1 config["evaluation_interval"] = 1 config["evaluation_duration"] = 10 # This should be False b/c iterations are very long and this would # cause evaluation to lag one iter behind training. config["evaluation_parallel_to_training"] = False # Evaluate on actual environment. config["evaluation_config"] = {"input": "sampler"} # Check, whether we can learn from the given file in `num_iterations` # iterations, up to a reward of `min_reward`. num_iterations = 5 min_reward = -300 # Test for torch framework (tf not implemented yet). trainer = cql.CQLTrainer(config=config) learnt = False for i in range(num_iterations): print(f"Iter {i}") eval_results = trainer.train().get("evaluation") if eval_results: print("... R={}".format(eval_results["episode_reward_mean"])) # Learn until some reward is reached on an actual live env. if eval_results["episode_reward_mean"] >= min_reward: learnt = True break if not learnt: raise ValueError("CQLTrainer did not reach {} reward from expert " "offline data!".format(min_reward)) # Get policy, model, and replay-buffer. pol = trainer.get_policy() cql_model = pol.model from ray.rllib.agents.cql.cql import replay_buffer # If you would like to query CQL's learnt Q-function for arbitrary # (cont.) actions, do the following: obs_batch = torch.from_numpy(np.random.random(size=(5, 3))) action_batch = torch.from_numpy(np.random.random(size=(5, 1))) q_values = cql_model.get_q_values(obs_batch, action_batch) # If you are using the "twin_q", there'll be 2 Q-networks and # we usually consider the min of the 2 outputs, like so: twin_q_values = cql_model.get_twin_q_values(obs_batch, action_batch) final_q_values = torch.min(q_values, twin_q_values) print(final_q_values) # Example on how to do evaluation on the trained Trainer # using the data from our buffer. # Get a sample (MultiAgentBatch -> SampleBatch). batch = replay_buffer.replay().policy_batches["default_policy"] obs = torch.from_numpy(batch["obs"]) # Pass the observations through our model to get the # features, which then to pass through the Q-head. model_out, _ = cql_model({"obs": obs}) # The estimated Q-values from the (historic) actions in the batch. q_values_old = cql_model.get_q_values(model_out, torch.from_numpy(batch["actions"])) # The estimated Q-values for the new actions computed # by our trainer policy. actions_new = pol.compute_actions_from_input_dict({"obs": obs})[0] q_values_new = cql_model.get_q_values(model_out, torch.from_numpy(actions_new)) print(f"Q-val batch={q_values_old}") print(f"Q-val policy={q_values_new}") trainer.stop()