# 40分钟吃掉DeepFM 推荐系统和广告CTR预估主流模型的演化有两条主要路线。 第一条是显式建模特征交互,提升模型对交叉特征的捕获能力。(如Wide&Deep,PNN,FNN,DCN,DeepFM,AutoInt等) 第二条是加入注意力机制,提升模型的自适应能力和解释性。(如DIN,DIEN,DSIN,FiBiNET,AutoInt等) 在所有这些模型中,DeepFM属于性价比非常高的模型(结构简洁,计算高效,指标有竞争力)。 张俊林大佬 在2019年的时候甚至建议 沿着 LR->FM->DeepFM->干点别的 这样的路线去迭代推荐系统。 参考文档: * 《推荐系统CTR预估学习路线》:https://zhuanlan.zhihu.com/p/351078721 * criteo数据集榜单:https://paperswithcode.com/dataset/criteo * DeepFM论文: https://arxiv.org/abs/1703.04247 * 《清晰易懂,基于pytorch的DeepFM的完整实验代码》: https://zhuanlan.zhihu.com/p/332786045 * torch实现参考:https://github.com/rixwew/pytorch-fm/blob/master/torchfm/model/dfm.py 公众号 算法美食屋后台回复关键词:DeepFM,获取本文全部代码和百度云盘数据集链接。 ## 一,DeepFM原理解析 DeepFM继承了DeepWide的主体结构,将高低特征进行融合。 其主要创新点有2个。 一是将Wide部分替换成了 FM结构,以更有效的捕获特征交互interaction. 二是FM中的隐向量 和 Deep部分的 embedding 向量共享权重,减少模型复杂性。 ![](https://tva1.sinaimg.cn/large/e6c9d24egy1h1brqobat6j21260nq0xl.jpg) ```python ``` ```python ``` ## 二,DeepFM的pytorch实现 下面是DeepFM的一个pytorch实现。 除了添加了一个并行的MLP模块用于捕获隐式高阶交叉和组合特征外,其余结构基本和FM的实现完全一致。 ```python import torch from torch import nn from torch import nn,Tensor import torch.nn.functional as F class NumEmbedding(nn.Module): """ 连续特征用linear层编码 输入shape: [batch_size,features_num(n), d_in], # d_in 通常是1 输出shape: [batch_size,features_num(n), d_out] """ def __init__(self, n: int, d_in: int, d_out: int, bias: bool = False) -> None: super().__init__() self.weight = nn.Parameter(Tensor(n, d_in, d_out)) self.bias = nn.Parameter(Tensor(n, d_out)) if bias else None with torch.no_grad(): for i in range(n): layer = nn.Linear(d_in, d_out) self.weight[i] = layer.weight.T if self.bias is not None: self.bias[i] = layer.bias def forward(self, x_num): # x_num: batch_size, features_num, d_in assert x_num.ndim == 3 #x = x_num[..., None] * self.weight[None] #x = x.sum(-2) x = torch.einsum("bfi,fij->bfj",x_num,self.weight) if self.bias is not None: x = x + self.bias[None] return x class CatEmbedding(nn.Module): """ 离散特征用Embedding层编码 输入shape: [batch_size,features_num], 输出shape: [batch_size,features_num, d_embed] """ def __init__(self, categories, d_embed): super().__init__() self.embedding = torch.nn.Embedding(sum(categories), d_embed) self.offsets = nn.Parameter( torch.tensor([0] + categories[:-1]).cumsum(0),requires_grad=False) torch.nn.init.xavier_uniform_(self.embedding.weight.data) def forward(self, x_cat): """ :param x_cat: Long tensor of size ``(batch_size, features_num)`` """ x = x_cat + self.offsets[None] return self.embedding(x) class CatLinear(nn.Module): """ 离散特征用Embedding实现线性层(等价于先F.onehot再nn.Linear()) 输入shape: [batch_size,features_num], 输出shape: [batch_size,features_num, d_out] """ def __init__(self, categories, d_out=1): super().__init__() self.fc = nn.Embedding(sum(categories), d_out) self.bias = nn.Parameter(torch.zeros((d_out,))) self.offsets = nn.Parameter( torch.tensor([0] + categories[:-1]).cumsum(0),requires_grad=False) def forward(self, x_cat): """ :param x: Long tensor of size ``(batch_size, features_num)`` """ x = x_cat + self.offsets[None] return torch.sum(self.fc(x), dim=1) + self.bias class FMLayer(nn.Module): """ FM交互项 """ def __init__(self, reduce_sum=True): super().__init__() self.reduce_sum = reduce_sum def forward(self, x): #注意:这里的x是公式中的 * xi """ :param x: Float tensor of size ``(batch_size, num_features, k)`` """ square_of_sum = torch.sum(x, dim=1) ** 2 sum_of_square = torch.sum(x ** 2, dim=1) ix = square_of_sum - sum_of_square if self.reduce_sum: ix = torch.sum(ix, dim=1, keepdim=True) return 0.5 * ix #deep部分 class MultiLayerPerceptron(nn.Module): def __init__(self, d_in, d_layers, dropout, d_out = 1): super().__init__() layers = [] for d in d_layers: layers.append(nn.Linear(d_in, d)) layers.append(nn.BatchNorm1d(d)) layers.append(nn.ReLU()) layers.append(nn.Dropout(p=dropout)) d_in = d layers.append(nn.Linear(d_layers[-1], d_out)) self.mlp = nn.Sequential(*layers) def forward(self, x): """ :param x: Float tensor of size ``(batch_size, d_in)`` """ return self.mlp(x) class DeepFM(nn.Module): """ DeepFM模型。 """ def __init__(self, d_numerical, categories, d_embed, deep_layers, deep_dropout, n_classes = 1): super().__init__() if d_numerical is None: d_numerical = 0 if categories is None: categories = [] self.categories = categories self.n_classes = n_classes self.num_linear = nn.Linear(d_numerical,n_classes) if d_numerical else None self.cat_linear = CatLinear(categories,n_classes) if categories else None self.num_embedding = NumEmbedding(d_numerical,1,d_embed) if d_numerical else None self.cat_embedding = CatEmbedding(categories, d_embed) if categories else None if n_classes==1: self.fm = FMLayer(reduce_sum=True) self.fm_linear = None else: assert n_classes>=2 self.fm = FMLayer(reduce_sum=False) self.fm_linear = nn.Linear(d_embed,n_classes) self.deep_in = d_numerical*d_embed+len(categories)*d_embed self.deep = MultiLayerPerceptron( d_in= self.deep_in, d_layers = deep_layers, dropout = deep_dropout, d_out = n_classes ) def forward(self, x): """ x_num: numerical features x_cat: category features """ x_num,x_cat = x #linear部分 x = 0.0 if self.num_linear: x = x + self.num_linear(x_num) if self.cat_linear: x = x + self.cat_linear(x_cat) #fm部分 x_embedding = [] if self.num_embedding: x_embedding.append(self.num_embedding(x_num[...,None])) if self.cat_embedding: x_embedding.append(self.cat_embedding(x_cat)) x_embedding = torch.cat(x_embedding,dim=1) if self.n_classes==1: x = x + self.fm(x_embedding) else: x = x + self.fm_linear(self.fm(x_embedding)) #deep部分 x = x + self.deep(x_embedding.view(-1,self.deep_in)) if self.n_classes==1: x = x.squeeze(-1) return x ``` ```python ##测试 DeepFM model = DeepFM(d_numerical = 3, categories = [4,3,2], d_embed = 4, deep_layers = [20,20], deep_dropout=0.1, n_classes = 1) x_num = torch.randn(2,3) x_cat = torch.randint(0,2,(2,3)) model((x_num,x_cat)) ``` ```python ``` ## 三,criteo数据集完整范例 Criteo数据集是一个经典的广告点击率CTR预测数据集。 这个数据集的目标是通过用户特征和广告特征来预测某条广告是否会为用户点击。 数据集有13维数值特征(I1~I13)和26维类别特征(C14~C39), 共39维特征, 特征中包含着许多缺失值。 训练集4000万个样本,测试集600万个样本。数据集大小超过100G. 此处使用的是采样100万个样本后的cretio_small数据集。 ```python !pip install -U torchkeras -i https://pypi.org/simple/ ``` ```python import numpy as np import pandas as pd import datetime from sklearn.model_selection import train_test_split import torch from torch import nn from torch.utils.data import Dataset,DataLoader import torch.nn.functional as F import torchkeras def printlog(info): nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print("\n"+"=========="*8 + "%s"%nowtime) print(info+'...\n\n') ``` ### 1,准备数据 ```python from sklearn.preprocessing import LabelEncoder,QuantileTransformer from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer dfdata = pd.read_csv("../data/criteo_small.zip",sep="\t",header=None) dfdata.columns = ["label"] + ["I"+str(x) for x in range(1,14)] + [ "C"+str(x) for x in range(14,40)] cat_cols = [x for x in dfdata.columns if x.startswith('C')] num_cols = [x for x in dfdata.columns if x.startswith('I')] num_pipe = Pipeline(steps = [('impute',SimpleImputer()),('quantile',QuantileTransformer())]) for col in cat_cols: dfdata[col] = LabelEncoder().fit_transform(dfdata[col]) dfdata[num_cols] = num_pipe.fit_transform(dfdata[num_cols]) categories = [dfdata[col].max()+1 for col in cat_cols] ``` ```python import torch from torch.utils.data import Dataset,DataLoader #DataFrame转换成torch数据集Dataset, 特征分割成X_num,X_cat方式 class DfDataset(Dataset): def __init__(self,df, label_col, num_features, cat_features, categories, is_training=True): self.X_num = torch.tensor(df[num_features].values).float() if num_features else None self.X_cat = torch.tensor(df[cat_features].values).long() if cat_features else None self.Y = torch.tensor(df[label_col].values).float() self.categories = categories self.is_training = is_training def __len__(self): return len(self.Y) def __getitem__(self,index): if self.is_training: return ((self.X_num[index],self.X_cat[index]),self.Y[index]) else: return (self.X_num[index],self.X_cat[index]) def get_categories(self): return self.categories ``` ```python dftrain_val,dftest = train_test_split(dfdata,test_size=0.2) dftrain,dfval = train_test_split(dftrain_val,test_size=0.2) ds_train = DfDataset(dftrain,label_col = "label",num_features = num_cols,cat_features = cat_cols, categories = categories, is_training=True) ds_val = DfDataset(dfval,label_col = "label",num_features = num_cols,cat_features = cat_cols, categories = categories, is_training=True) ds_test = DfDataset(dftest,label_col = "label",num_features = num_cols,cat_features = cat_cols, categories = categories, is_training=True) ``` ```python dl_train = DataLoader(ds_train,batch_size = 2048,shuffle=True) dl_val = DataLoader(ds_val,batch_size = 2048,shuffle=False) dl_test = DataLoader(ds_test,batch_size = 2048,shuffle=False) for features,labels in dl_train: break ``` ### 2,定义模型 ```python def create_net(): net = DeepFM( d_numerical= ds_train.X_num.shape[1], categories= ds_train.get_categories(), d_embed = 8, deep_layers = [128,64,32], deep_dropout=0.25, n_classes = 1 ) return net from torchkeras import summary net = create_net() print("net:\n",net) summary(net,input_data=features); ``` ```python ``` ### 3,训练模型 ```python import os,sys,time import numpy as np import pandas as pd import datetime from tqdm import tqdm import torch from torch import nn from accelerate import Accelerator from copy import deepcopy def printlog(info): nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') print("\n"+"=========="*8 + "%s"%nowtime) print(str(info)+"\n") class StepRunner: def __init__(self, net, loss_fn,stage = "train", metrics_dict = None, optimizer = None, lr_scheduler = None, accelerator = None ): self.net,self.loss_fn,self.metrics_dict,self.stage = net,loss_fn,metrics_dict,stage self.optimizer,self.lr_scheduler = optimizer,lr_scheduler self.accelerator = accelerator def __call__(self, features, labels): #loss preds = self.net(features) loss = self.loss_fn(preds,labels) #backward() if self.optimizer is not None and self.stage=="train": if self.accelerator is None: loss.backward() else: self.accelerator.backward(loss) self.optimizer.step() if self.lr_scheduler is not None: self.lr_scheduler.step() self.optimizer.zero_grad() #metrics step_metrics = {self.stage+"_"+name:metric_fn(preds, labels).item() for name,metric_fn in self.metrics_dict.items()} return loss.item(),step_metrics class EpochRunner: def __init__(self,steprunner): self.steprunner = steprunner self.stage = steprunner.stage self.steprunner.net.train() if self.stage=="train" else self.steprunner.net.eval() def __call__(self,dataloader): total_loss,step = 0,0 loop = tqdm(enumerate(dataloader), total =len(dataloader)) for i, batch in loop: features,labels = batch if self.stage=="train": loss, step_metrics = self.steprunner(features,labels) else: with torch.no_grad(): loss, step_metrics = self.steprunner(features,labels) step_log = dict({self.stage+"_loss":loss},**step_metrics) total_loss += loss step+=1 if i!=len(dataloader)-1: loop.set_postfix(**step_log) else: epoch_loss = total_loss/step epoch_metrics = {self.stage+"_"+name:metric_fn.compute().item() for name,metric_fn in self.steprunner.metrics_dict.items()} epoch_log = dict({self.stage+"_loss":epoch_loss},**epoch_metrics) loop.set_postfix(**epoch_log) for name,metric_fn in self.steprunner.metrics_dict.items(): metric_fn.reset() return epoch_log class KerasModel(torch.nn.Module): def __init__(self,net,loss_fn,metrics_dict=None,optimizer=None,lr_scheduler = None): super().__init__() self.accelerator = Accelerator() self.history = {} self.net = net self.loss_fn = loss_fn self.metrics_dict = nn.ModuleDict(metrics_dict) self.optimizer = optimizer if optimizer is not None else torch.optim.Adam( self.parameters(), lr=1e-2) self.lr_scheduler = lr_scheduler self.net,self.loss_fn,self.metrics_dict,self.optimizer = self.accelerator.prepare( self.net,self.loss_fn,self.metrics_dict,self.optimizer) def forward(self, x): if self.net: return self.net.forward(x) else: raise NotImplementedError def fit(self, train_data, val_data=None, epochs=10, ckpt_path='checkpoint.pt', patience=5, monitor="val_loss", mode="min"): train_data = self.accelerator.prepare(train_data) val_data = self.accelerator.prepare(val_data) if val_data else [] for epoch in range(1, epochs+1): printlog("Epoch {0} / {1}".format(epoch, epochs)) # 1,train ------------------------------------------------- train_step_runner = StepRunner(net = self.net,stage="train", loss_fn = self.loss_fn,metrics_dict=deepcopy(self.metrics_dict), optimizer = self.optimizer, lr_scheduler = self.lr_scheduler, accelerator = self.accelerator) train_epoch_runner = EpochRunner(train_step_runner) train_metrics = train_epoch_runner(train_data) for name, metric in train_metrics.items(): self.history[name] = self.history.get(name, []) + [metric] # 2,validate ------------------------------------------------- if val_data: val_step_runner = StepRunner(net = self.net,stage="val", loss_fn = self.loss_fn,metrics_dict=deepcopy(self.metrics_dict), accelerator = self.accelerator) val_epoch_runner = EpochRunner(val_step_runner) with torch.no_grad(): val_metrics = val_epoch_runner(val_data) val_metrics["epoch"] = epoch for name, metric in val_metrics.items(): self.history[name] = self.history.get(name, []) + [metric] # 3,early-stopping ------------------------------------------------- arr_scores = self.history[monitor] best_score_idx = np.argmax(arr_scores) if mode=="max" else np.argmin(arr_scores) if best_score_idx==len(arr_scores)-1: torch.save(self.net.state_dict(),ckpt_path) print("<<<<<< reach best {0} : {1} >>>>>>".format(monitor, arr_scores[best_score_idx]),file=sys.stderr) if len(arr_scores)-best_score_idx>patience: print("<<<<<< {} without improvement in {} epoch, early stopping >>>>>>".format( monitor,patience),file=sys.stderr) self.net.load_state_dict(torch.load(ckpt_path)) break return pd.DataFrame(self.history) @torch.no_grad() def evaluate(self, val_data): val_data = self.accelerator.prepare(val_data) val_step_runner = StepRunner(net = self.net,stage="val", loss_fn = self.loss_fn,metrics_dict=deepcopy(self.metrics_dict), accelerator = self.accelerator) val_epoch_runner = EpochRunner(val_step_runner) val_metrics = val_epoch_runner(val_data) return val_metrics @torch.no_grad() def predict(self, dataloader): dataloader = self.accelerator.prepare(dataloader) result = torch.cat([self.forward(t[0]) for t in dataloader]) return result.data ``` ```python from torchkeras.metrics import AUC loss_fn = nn.BCEWithLogitsLoss() metrics_dict = {"auc":AUC()} optimizer = torch.optim.Adam(net.parameters(), lr=0.002, weight_decay=0.001) model = KerasModel(net, loss_fn = loss_fn, metrics_dict= metrics_dict, optimizer = optimizer ) ``` ```python dfhistory = model.fit(train_data=dl_train,val_data=dl_val,epochs=50, patience=5, monitor = "val_auc",mode="max",ckpt_path='checkpoint.pt') ``` ### 4,评估模型 ```python %matplotlib inline %config InlineBackend.figure_format = 'svg' import matplotlib.pyplot as plt def plot_metric(dfhistory, metric): train_metrics = dfhistory["train_"+metric] val_metrics = dfhistory['val_'+metric] epochs = range(1, len(train_metrics) + 1) plt.plot(epochs, train_metrics, 'bo--') plt.plot(epochs, val_metrics, 'ro-') plt.title('Training and validation '+ metric) plt.xlabel("Epochs") plt.ylabel(metric) plt.legend(["train_"+metric, 'val_'+metric]) plt.show() ``` ```python plot_metric(dfhistory,"loss") ``` ```python plot_metric(dfhistory,"auc") ``` ### 5,使用模型 ```python from sklearn.metrics import roc_auc_score preds = torch.sigmoid(model.predict(dl_val)) labels = torch.cat([x[-1] for x in dl_val]) val_auc = roc_auc_score(labels.cpu().numpy(),preds.cpu().numpy()) print(val_auc) ``` ### 6,保存模型 ```python torch.save(model.net.state_dict(),"best_deepfm.pt") net_clone = create_net() net_clone.load_state_dict(torch.load("best_deepfm.pt")) ``` ```python from sklearn.metrics import roc_auc_score net_clone.eval() preds = torch.cat([torch.sigmoid(net_clone(x[0])).data for x in dl_val]) labels = torch.cat([x[-1] for x in dl_val]) val_auc = roc_auc_score(labels.cpu().numpy(),preds.cpu().numpy()) print(val_auc) ```