123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- from typing import List, Optional, Union, Tuple
- import cv2
- import numpy as np
- from supervision.detection.core import Detections
- from supervision.draw.color import Color, ColorPalette
- class BoxAnnotator:
- """
- A class for drawing bounding boxes on an image using detections provided.
- Attributes:
- color (Union[Color, ColorPalette]): The color to draw the bounding box,
- can be a single color or a color palette
- thickness (int): The thickness of the bounding box lines, default is 2
- text_color (Color): The color of the text on the bounding box, default is white
- text_scale (float): The scale of the text on the bounding box, default is 0.5
- text_thickness (int): The thickness of the text on the bounding box,
- default is 1
- text_padding (int): The padding around the text on the bounding box,
- default is 5
- """
- def __init__(
- self,
- color: Union[Color, ColorPalette] = ColorPalette.DEFAULT,
- thickness: int = 3, # 1 for seeclick 2 for mind2web and 3 for demo
- text_color: Color = Color.BLACK,
- text_scale: float = 0.5, # 0.8 for mobile/web, 0.3 for desktop # 0.4 for mind2web
- text_thickness: int = 2, #1, # 2 for demo
- text_padding: int = 10,
- avoid_overlap: bool = True,
- ):
- self.color: Union[Color, ColorPalette] = color
- self.thickness: int = thickness
- self.text_color: Color = text_color
- self.text_scale: float = text_scale
- self.text_thickness: int = text_thickness
- self.text_padding: int = text_padding
- self.avoid_overlap: bool = avoid_overlap
- def annotate(
- self,
- scene: np.ndarray,
- detections: Detections,
- labels: Optional[List[str]] = None,
- skip_label: bool = False,
- image_size: Optional[Tuple[int, int]] = None,
- ) -> np.ndarray:
- """
- Draws bounding boxes on the frame using the detections provided.
- Args:
- scene (np.ndarray): The image on which the bounding boxes will be drawn
- detections (Detections): The detections for which the
- bounding boxes will be drawn
- labels (Optional[List[str]]): An optional list of labels
- corresponding to each detection. If `labels` are not provided,
- corresponding `class_id` will be used as label.
- skip_label (bool): Is set to `True`, skips bounding box label annotation.
- Returns:
- np.ndarray: The image with the bounding boxes drawn on it
- Example:
- ```python
- import supervision as sv
- classes = ['person', ...]
- image = ...
- detections = sv.Detections(...)
- box_annotator = sv.BoxAnnotator()
- labels = [
- f"{classes[class_id]} {confidence:0.2f}"
- for _, _, confidence, class_id, _ in detections
- ]
- annotated_frame = box_annotator.annotate(
- scene=image.copy(),
- detections=detections,
- labels=labels
- )
- ```
- """
- font = cv2.FONT_HERSHEY_SIMPLEX
- for i in range(len(detections)):
- x1, y1, x2, y2 = detections.xyxy[i].astype(int)
- class_id = (
- detections.class_id[i] if detections.class_id is not None else None
- )
- idx = class_id if class_id is not None else i
- color = (
- self.color.by_idx(idx)
- if isinstance(self.color, ColorPalette)
- else self.color
- )
- cv2.rectangle(
- img=scene,
- pt1=(x1, y1),
- pt2=(x2, y2),
- color=color.as_bgr(),
- thickness=self.thickness,
- )
- if skip_label:
- continue
- text = (
- f"{class_id}"
- if (labels is None or len(detections) != len(labels))
- else labels[i]
- )
- text_width, text_height = cv2.getTextSize(
- text=text,
- fontFace=font,
- fontScale=self.text_scale,
- thickness=self.text_thickness,
- )[0]
- if not self.avoid_overlap:
- text_x = x1 + self.text_padding
- text_y = y1 - self.text_padding
- text_background_x1 = x1
- text_background_y1 = y1 - 2 * self.text_padding - text_height
- text_background_x2 = x1 + 2 * self.text_padding + text_width
- text_background_y2 = y1
- # text_x = x1 - self.text_padding - text_width
- # text_y = y1 + self.text_padding + text_height
- # text_background_x1 = x1 - 2 * self.text_padding - text_width
- # text_background_y1 = y1
- # text_background_x2 = x1
- # text_background_y2 = y1 + 2 * self.text_padding + text_height
- else:
- text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2 = get_optimal_label_pos(self.text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size)
- cv2.rectangle(
- img=scene,
- pt1=(text_background_x1, text_background_y1),
- pt2=(text_background_x2, text_background_y2),
- color=color.as_bgr(),
- thickness=cv2.FILLED,
- )
- # import pdb; pdb.set_trace()
- box_color = color.as_rgb()
- luminance = 0.299 * box_color[0] + 0.587 * box_color[1] + 0.114 * box_color[2]
- text_color = (0,0,0) if luminance > 160 else (255,255,255)
- cv2.putText(
- img=scene,
- text=text,
- org=(text_x, text_y),
- fontFace=font,
- fontScale=self.text_scale,
- # color=self.text_color.as_rgb(),
- color=text_color,
- thickness=self.text_thickness,
- lineType=cv2.LINE_AA,
- )
- return scene
-
- def box_area(box):
- return (box[2] - box[0]) * (box[3] - box[1])
- def intersection_area(box1, box2):
- x1 = max(box1[0], box2[0])
- y1 = max(box1[1], box2[1])
- x2 = min(box1[2], box2[2])
- y2 = min(box1[3], box2[3])
- return max(0, x2 - x1) * max(0, y2 - y1)
- def IoU(box1, box2, return_max=True):
- intersection = intersection_area(box1, box2)
- union = box_area(box1) + box_area(box2) - intersection
- if box_area(box1) > 0 and box_area(box2) > 0:
- ratio1 = intersection / box_area(box1)
- ratio2 = intersection / box_area(box2)
- else:
- ratio1, ratio2 = 0, 0
- if return_max:
- return max(intersection / union, ratio1, ratio2)
- else:
- return intersection / union
- def get_optimal_label_pos(text_padding, text_width, text_height, x1, y1, x2, y2, detections, image_size):
- """ check overlap of text and background detection box, and get_optimal_label_pos,
- pos: str, position of the text, must be one of 'top left', 'top right', 'outer left', 'outer right' TODO: if all are overlapping, return the last one, i.e. outer right
- Threshold: default to 0.3
- """
- def get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size):
- is_overlap = False
- for i in range(len(detections)):
- detection = detections.xyxy[i].astype(int)
- if IoU([text_background_x1, text_background_y1, text_background_x2, text_background_y2], detection) > 0.3:
- is_overlap = True
- break
- # check if the text is out of the image
- if text_background_x1 < 0 or text_background_x2 > image_size[0] or text_background_y1 < 0 or text_background_y2 > image_size[1]:
- is_overlap = True
- return is_overlap
-
- # if pos == 'top left':
- text_x = x1 + text_padding
- text_y = y1 - text_padding
- text_background_x1 = x1
- text_background_y1 = y1 - 2 * text_padding - text_height
- text_background_x2 = x1 + 2 * text_padding + text_width
- text_background_y2 = y1
- is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
- if not is_overlap:
- return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
-
- # elif pos == 'outer left':
- text_x = x1 - text_padding - text_width
- text_y = y1 + text_padding + text_height
- text_background_x1 = x1 - 2 * text_padding - text_width
- text_background_y1 = y1
- text_background_x2 = x1
- text_background_y2 = y1 + 2 * text_padding + text_height
- is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
- if not is_overlap:
- return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
-
- # elif pos == 'outer right':
- text_x = x2 + text_padding
- text_y = y1 + text_padding + text_height
- text_background_x1 = x2
- text_background_y1 = y1
- text_background_x2 = x2 + 2 * text_padding + text_width
- text_background_y2 = y1 + 2 * text_padding + text_height
- is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
- if not is_overlap:
- return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
- # elif pos == 'top right':
- text_x = x2 - text_padding - text_width
- text_y = y1 - text_padding
- text_background_x1 = x2 - 2 * text_padding - text_width
- text_background_y1 = y1 - 2 * text_padding - text_height
- text_background_x2 = x2
- text_background_y2 = y1
- is_overlap = get_is_overlap(detections, text_background_x1, text_background_y1, text_background_x2, text_background_y2, image_size)
- if not is_overlap:
- return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
- return text_x, text_y, text_background_x1, text_background_y1, text_background_x2, text_background_y2
|