cpu_adagrad.h 4.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. #pragma once
  2. #define NOMINMAX // Windows idiosyncrasy
  3. // https://stackoverflow.com/questions/4913922/possible-problems-with-nominmax-on-visual-c
  4. #include <cuda_fp16.h>
  5. #include <cuda_runtime_api.h>
  6. #include <stdio.h>
  7. #include <cassert>
  8. #include "cuda.h"
  9. #include "custom_cuda_layers.h"
  10. #include "simd.h"
  11. #define STEP(SPAN) \
  12. void Step_##SPAN(float* _params, \
  13. float* grads, \
  14. float* _exp_avg_sq, \
  15. size_t _param_size, \
  16. __half* dev_param = nullptr, \
  17. bool half_precision = false);
  18. class Adagrad_Optimizer {
  19. public:
  20. Adagrad_Optimizer(float alpha = 1e-2, float eps = 1e-8, float weight_decay = 0)
  21. : _alpha(alpha), _eps(eps), _weight_decay(weight_decay), _buf_index(false)
  22. {
  23. cudaMallocHost((void**)_doubled_buffer, TILE * sizeof(float));
  24. cudaMallocHost((void**)(_doubled_buffer + 1), TILE * sizeof(float));
  25. _streams[0] = Context::Instance().GetCurrentStream();
  26. _streams[1] = Context::Instance().GetNewStream();
  27. }
  28. ~Adagrad_Optimizer()
  29. {
  30. cudaFreeHost(_doubled_buffer[0]);
  31. cudaFreeHost(_doubled_buffer[1]);
  32. }
  33. #if defined(__AVX512__) or defined(__AVX256__)
  34. template <int span>
  35. void Step_AVX(size_t* rounded_size,
  36. float* _params,
  37. float* grads,
  38. float* _exp_avg_sq,
  39. size_t param_size,
  40. __half* dev_param = nullptr,
  41. bool half_precision = false);
  42. #endif
  43. STEP(1)
  44. STEP(4)
  45. STEP(8)
  46. inline void SynchronizeStreams()
  47. {
  48. for (int i = 0; i < 2; i++) cudaStreamSynchronize(_streams[i]);
  49. }
  50. inline void IncrementStep(size_t step)
  51. {
  52. _step++;
  53. if (_step != step) { _step = step; }
  54. }
  55. inline void update_state(float lr, float epsilon, float weight_decay)
  56. {
  57. _alpha = lr;
  58. _eps = epsilon;
  59. _weight_decay = weight_decay;
  60. }
  61. private:
  62. float _alpha;
  63. float _eps;
  64. float _weight_decay;
  65. float _betta1_t;
  66. float _betta2_t;
  67. size_t _step;
  68. float* _doubled_buffer[2];
  69. bool _buf_index;
  70. cudaStream_t _streams[2];
  71. };
  72. #if defined(__AVX512__) or defined(__AVX256__)
  73. template <int span>
  74. void Adagrad_Optimizer::Step_AVX(size_t* rounded_size,
  75. float* _params,
  76. float* grads,
  77. float* _exp_avg_sq,
  78. size_t _param_size,
  79. __half* dev_params,
  80. bool half_precision)
  81. {
  82. size_t new_rounded_size = 0;
  83. AVX_Data eps_4;
  84. eps_4.data = SIMD_SET(_eps);
  85. float step_size = -1 * _alpha;
  86. AVX_Data step_size_4;
  87. step_size_4.data = SIMD_SET(step_size);
  88. AVX_Data weight_decay4;
  89. if (_weight_decay > 0) weight_decay4.data = SIMD_SET(_weight_decay);
  90. new_rounded_size = ROUND_DOWN(_param_size, SIMD_WIDTH * span);
  91. for (size_t t = 0; t < new_rounded_size; t += TILE) {
  92. size_t copy_size = TILE;
  93. if ((t + TILE) > new_rounded_size) copy_size = new_rounded_size - t;
  94. size_t offset = copy_size + t;
  95. if ((t / TILE) >= 2) { cudaStreamSynchronize(_streams[_buf_index]); }
  96. #pragma omp parallel for
  97. for (size_t i = t; i < offset; i += SIMD_WIDTH * span) {
  98. AVX_Data grad_4[span];
  99. simd_load<span>(grad_4, grads + i, half_precision);
  100. AVX_Data momentum_4[span];
  101. simd_load<span>(momentum_4, grads + i, false);
  102. AVX_Data variance_4[span];
  103. simd_load<span>(variance_4, _exp_avg_sq + i, false);
  104. AVX_Data param_4[span];
  105. simd_load<span>(param_4, _params + i, half_precision);
  106. if (_weight_decay > 0) { simd_fma<span>(grad_4, param_4, weight_decay4, grad_4); }
  107. simd_fma<span>(variance_4, grad_4, grad_4, variance_4);
  108. simd_sqrt<span>(grad_4, variance_4);
  109. simd_add<span>(grad_4, grad_4, eps_4);
  110. simd_div<span>(grad_4, momentum_4, grad_4);
  111. simd_fma<span>(param_4, grad_4, step_size_4, param_4);
  112. simd_store<span>(_params + i, param_4, half_precision);
  113. if (dev_params) {
  114. simd_store<span>(_doubled_buffer[_buf_index] + (i - t), param_4, half_precision);
  115. }
  116. simd_store<span>(_exp_avg_sq + i, variance_4, false);
  117. }
  118. if (dev_params) {
  119. if (half_precision)
  120. launch_param_update_half(
  121. _doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);
  122. else
  123. launch_param_update(
  124. _doubled_buffer[_buf_index], dev_params + t, copy_size, _streams[_buf_index]);
  125. _buf_index = !_buf_index;
  126. }
  127. }
  128. *rounded_size = new_rounded_size;
  129. }
  130. #endif