eigenvalue.py 5.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149
  1. # Copyright (c) Microsoft Corporation.
  2. # SPDX-License-Identifier: Apache-2.0
  3. # DeepSpeed Team
  4. import torch
  5. from deepspeed.utils import log_dist
  6. import numpy as np
  7. import logging
  8. class Eigenvalue(object):
  9. def __init__(self,
  10. verbose=False,
  11. max_iter=100,
  12. tol=1e-2,
  13. stability=0,
  14. gas_boundary_resolution=1,
  15. layer_name='',
  16. layer_num=0):
  17. super().__init__()
  18. self.verbose = verbose
  19. self.max_iter = max_iter
  20. self.tol = tol
  21. self.stability = stability
  22. self.gas_boundary_resolution = gas_boundary_resolution
  23. self.layer_name = layer_name
  24. self.layer_num = layer_num
  25. assert len(self.layer_name) > 0 and layer_num > 0
  26. log_dist(
  27. f'enabled eigenvalue with verbose={verbose}, max_iter={max_iter}, tol={tol}, stability={stability}, gas_boundary_resolution={gas_boundary_resolution}, layer_name={layer_name}, layer_num={layer_num}',
  28. ranks=[0])
  29. # Replace all nan/pos-inf/neg-inf to zero
  30. # TODO: Pytorch new version may add this function, replace this one by then.
  31. def nan_to_num(self, x):
  32. device = x.device
  33. x = x.cpu().numpy()
  34. x = np.nan_to_num(x=x, copy=False, nan=0.0, posinf=0.0, neginf=0.0)
  35. return torch.from_numpy(x).to(device)
  36. def normalize(self, v):
  37. norm_squared = self.inner_product(v, v)
  38. norm = norm_squared**0.5 + self.stability
  39. normalized_vectors = [vector / norm for vector in v]
  40. normalized_vectors = [self.nan_to_num(vector) for vector in normalized_vectors]
  41. return normalized_vectors
  42. def inner_product(self, xs, ys):
  43. return sum([torch.sum(x * y) for (x, y) in zip(xs, ys)])
  44. def get_layers(self, module):
  45. scope_names = self.layer_name.split('.')
  46. assert len(scope_names) > 0
  47. m = module
  48. for name in scope_names:
  49. assert hasattr(m, name), "layer_name configuration is invalid."
  50. m = getattr(m, name)
  51. return m
  52. def compute_eigenvalue(self, module, device=None, scale=1.0):
  53. block_eigenvalue = []
  54. param_keys = []
  55. layers = self.get_layers(module)
  56. for block in range(self.layer_num):
  57. model_block = layers[block]
  58. # We found this randn() has obvious accuracy impact in some cases, save/recover random state here.
  59. rng_state = torch.random.get_rng_state()
  60. if device is None:
  61. v = [
  62. torch.randn(p.size()) for p in model_block.parameters()
  63. if p.grad is not None and p.grad.grad_fn is not None
  64. ]
  65. else:
  66. v = [
  67. torch.randn(p.size(), device=device) for p in model_block.parameters()
  68. if p.grad is not None and p.grad.grad_fn is not None
  69. ]
  70. torch.random.set_rng_state(rng_state)
  71. grads = [
  72. param.grad for param in model_block.parameters()
  73. if param.grad is not None and param.grad.grad_fn is not None
  74. ]
  75. params = [
  76. param for param in model_block.parameters()
  77. if param.grad is not None and param.grad.grad_fn is not None
  78. ]
  79. layer_keys = [id(p) for p in model_block.parameters()]
  80. param_keys.append(layer_keys)
  81. v = self.normalize(v)
  82. # Disable eigenvalue if the model doesn't support second order gradients computation,
  83. # e.g. when enabling DS transformer kernel.
  84. if len(grads) == 0 or len(params) == 0:
  85. log_dist(f'The model does NOT support eigenvalue computation.', ranks=[0], level=logging.WARNING)
  86. return []
  87. i = 0
  88. eigenvalue_current, eigenvalue_previous = 1., 0.
  89. while (i < self.max_iter) and abs(eigenvalue_current) > 0 and (abs(
  90. (eigenvalue_current - eigenvalue_previous) / eigenvalue_current) >=
  91. self.tol): # test convergence criteria
  92. eigenvalue_previous = eigenvalue_current
  93. Hv = torch.autograd.grad(grads, params, grad_outputs=v, only_inputs=True, retain_graph=True)
  94. #Hv = [hv.float() for hv in Hv]
  95. Hv = [self.nan_to_num(hv).float() for hv in Hv]
  96. eigenvalue_current = self.inner_product(Hv, v).item()
  97. v = self.normalize(Hv)
  98. v = [x / scale for x in v]
  99. i += 1
  100. eigenvalue_current *= scale
  101. block_eigenvalue.append(eigenvalue_current)
  102. if self.verbose:
  103. log_dist(f'block: {block}, power iteration: {i}, eigenvalue: {eigenvalue_current}', ranks=[0])
  104. block_eigenvalue = self.post_process(block_eigenvalue)
  105. if self.verbose:
  106. log_dist(f'post processed block_eigenvalue: {block_eigenvalue}', ranks=[0])
  107. # {param_id: (eigenvalue, layer_id)}
  108. ev_dict = {}
  109. for i, (layer_keys, value) in enumerate(zip(param_keys, block_eigenvalue)):
  110. ev_dict.update(dict.fromkeys(layer_keys, (value, i)))
  111. return ev_dict
  112. # 1. Map all eigenvalues to [0, 1.0].
  113. # 2. Some layers can't generate valid eigenvalues on fp16 precision, use 1.0 instead.
  114. def post_process(self, value_list):
  115. max_value = abs(max(value_list, key=abs))
  116. return [abs(v) / max_value if v != 0.0 else 1.0 for v in value_list]