# Copyright 2019 The Microsoft DeepSpeed Team # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #Taken and modified for DeepSpeed from: # https://github.com/NVIDIA/Megatron-LM/blob/master/fp16/loss_scaler.py #Commit: 93ab4bea59dc5cbf97c079d313741866af4deac9 import torch INITIAL_LOSS_SCALE = 'init_scale' SCALE_WINDOW = 'scale_window' DELAYED_SHIFT = 'delayed_shift' MIN_LOSS_SCALE = 'min_scale' # item() is a recent addition, so this helps with backward compatibility. def to_python_float(t): if hasattr(t, 'item'): return t.item() return t[0] class LossScalerBase: """LossScalarBase Base class for a loss scaler """ def __init__(self, cur_scale): self.cur_scale = cur_scale self.dynamic = False @property def loss_scale(self): return self.cur_scale def scale_gradient(self, module, grad_in, grad_out): return tuple(self.loss_scale * g for g in grad_in) def update_scale(self, overflow): pass def backward(self, loss, retain_graph=False): scaled_loss = loss * self.loss_scale scaled_loss.backward(retain_graph=retain_graph) class LossScaler(LossScalerBase): """ Class that manages a static loss scale. This class is intended to interact with :class:`FP16_Optimizer`, and should not be directly manipulated by the user. Use of :class:`LossScaler` is enabled via the ``static_loss_scale`` argument to :class:`FP16_Optimizer`'s constructor. Args: scale (float, optional, default=1.0): The loss scale. """ def __init__(self, scale=1): super(LossScaler, self).__init__(scale) # `params` is a list / generator of torch.Variable def has_overflow(self, params): return False # `x` is a torch.Tensor def _has_inf_or_nan(x): return False class DynamicLossScaler(LossScalerBase): """ Class that manages dynamic loss scaling. It is recommended to use :class:`DynamicLossScaler` indirectly, by supplying ``dynamic_loss_scale=True`` to the constructor of :class:`FP16_Optimizer`. However, it's important to understand how :class:`DynamicLossScaler` operates, because the default options can be changed using the the ``dynamic_loss_args`` argument to :class:`FP16_Optimizer`'s constructor. Loss scaling is designed to combat the problem of underflowing gradients encountered at long times when training fp16 networks. Dynamic loss scaling begins by attempting a very high loss scale. Ironically, this may result in OVERflowing gradients. If overflowing gradients are encountered, :class:`DynamicLossScaler` informs :class:`FP16_Optimizer` that an overflow has occurred. :class:`FP16_Optimizer` then skips the update step for this particular iteration/minibatch, and :class:`DynamicLossScaler` adjusts the loss scale to a lower value. If a certain number of iterations occur without overflowing gradients detected, :class:`DynamicLossScaler` increases the loss scale once more. In this way :class:`DynamicLossScaler` attempts to "ride the edge" of always using the highest loss scale possible without incurring overflow. Args: init_scale (float, optional, default=2**32): Initial loss scale attempted by :class:`DynamicLossScaler.` scale_factor (float, optional, default=2.0): Factor used when adjusting the loss scale. If an overflow is encountered, the loss scale is readjusted to loss scale/``scale_factor``. If ``scale_window`` consecutive iterations take place without an overflow, the loss scale is readjusted to loss_scale*``scale_factor``. scale_window (int, optional, default=1000): Number of consecutive iterations without an overflow to wait before increasing the loss scale. """ def __init__(self, init_scale=2**32, scale_factor=2., scale_window=1000, min_scale=1, delayed_shift=1, consecutive_hysteresis=False, raise_error_at_min_scale=True): super(DynamicLossScaler, self).__init__(init_scale) self.cur_iter = 0 self.last_overflow_iter = -1 self.scale_factor = scale_factor self.scale_window = scale_window self.min_scale = min_scale self.delayed_shift = delayed_shift self.cur_hysteresis = delayed_shift self.consecutive_hysteresis = consecutive_hysteresis self.raise_error_at_min_scale = raise_error_at_min_scale self.dynamic = True # `params` is a list / generator of torch.Variable def has_overflow_serial(self, params): for p in params: if p.grad is not None and self._has_inf_or_nan(p.grad.data): return True return False # `x` is a torch.Tensor def _has_inf_or_nan(x): try: # if x is half, the .float() incurs an additional deep copy, but it's necessary if # Pytorch's .sum() creates a one-element tensor of the same type as x # (which is true for some recent version of pytorch). cpu_sum = float(x.float().sum()) # More efficient version that can be used if .sum() returns a Python scalar # cpu_sum = float(x.sum()) except RuntimeError as instance: # We want to check if inst is actually an overflow exception. # RuntimeError could come from a different error. # If so, we still want the exception to propagate. if "value cannot be converted" not in instance.args[0]: raise return True else: if cpu_sum in [float('inf'), -float('inf')] or cpu_sum != cpu_sum: return True return False # `overflow` is boolean indicating whether the gradient overflowed def update_scale(self, overflow): if overflow: # self.cur_scale /= self.scale_factor if self.delayed_shift == 1 or self.cur_hysteresis == 1: if (self.cur_scale == self.min_scale) and self.raise_error_at_min_scale: raise Exception( "Current loss scale already at minimum - cannot decrease scale anymore. Exiting run." ) self.cur_scale = max(self.cur_scale / self.scale_factor, self.min_scale) else: self.cur_hysteresis -= 1 self.last_overflow_iter = self.cur_iter else: if self.consecutive_hysteresis: self.cur_hysteresis = self.delayed_shift if (self.cur_iter - self.last_overflow_iter) % self.scale_window == 0: if not self.consecutive_hysteresis: self.cur_hysteresis = self.delayed_shift self.cur_scale *= self.scale_factor self.cur_iter += 1 # Although loss scaling is only defined for fp16, yet for backwards compatibility # we still create a scaler for other dtypes (fp32, bf16) which does not perform any scaling. def CreateLossScaler(dtype, static_loss_scale, dynamic_scaling, dynamic_loss_args): if dtype == torch.half and dynamic_scaling: if dynamic_loss_args is None: return DynamicLossScaler() return DynamicLossScaler(**dynamic_loss_args) loss_scale_value = static_loss_scale if dtype == torch.half else 1.0 return LossScaler(scale=loss_scale_value) ############################################################## # Example usage below here -- assuming it's in a separate file ############################################################## """ TO-DO separate out into an example. if __name__ == "__main__": import torch from torch.autograd import Variable from dynamic_loss_scaler import DynamicLossScaler # N is batch size; D_in is input dimension; # H is hidden dimension; D_out is output dimension. N, D_in, H, D_out = 64, 1000, 100, 10 # Create random Tensors to hold inputs and outputs, and wrap them in Variables. x = Variable(torch.randn(N, D_in), requires_grad=False) y = Variable(torch.randn(N, D_out), requires_grad=False) w1 = Variable(torch.randn(D_in, H), requires_grad=True) w2 = Variable(torch.randn(H, D_out), requires_grad=True) parameters = [w1, w2] learning_rate = 1e-6 optimizer = torch.optim.SGD(parameters, lr=learning_rate) loss_scaler = DynamicLossScaler() for t in range(500): y_pred = x.mm(w1).clamp(min=0).mm(w2) loss = (y_pred - y).pow(2).sum() * loss_scaler.loss_scale print('Iter {} loss scale: {}'.format(t, loss_scaler.loss_scale)) print('Iter {} scaled loss: {}'.format(t, loss.data[0])) print('Iter {} unscaled loss: {}'.format(t, loss.data[0] / loss_scaler.loss_scale)) # Run backprop optimizer.zero_grad() loss.backward() # Check for overflow has_overflow = DynamicLossScaler.has_overflow(parameters) # If no overflow, unscale grad and update as usual if not has_overflow: for param in parameters: param.grad.data.mul_(1. / loss_scaler.loss_scale) optimizer.step() # Otherwise, don't do anything -- ie, skip iteration else: print('fp16 dynamic loss scale overflow!') # Update loss scale for next iteration loss_scaler.update_scale(has_overflow) """