# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team """ Implementation of learning rate schedules. Taken and modified from PyTorch v1.0.1 source https://github.com/pytorch/pytorch/blob/v1.1.0/torch/optim/lr_scheduler.py """ import argparse from torch.optim import Optimizer import math from deepspeed.utils import logger LR_SCHEDULE = 'lr_schedule' LR_RANGE_TEST = 'LRRangeTest' ONE_CYCLE = 'OneCycle' WARMUP_LR = 'WarmupLR' WARMUP_DECAY_LR = 'WarmupDecayLR' VALID_LR_SCHEDULES = [LR_RANGE_TEST, ONE_CYCLE, WARMUP_LR, WARMUP_DECAY_LR] LR_RANGE_TEST_MIN_LR = 'lr_range_test_min_lr' LR_RANGE_TEST_STEP_RATE = 'lr_range_test_step_rate' LR_RANGE_TEST_STEP_SIZE = 'lr_range_test_step_size' LR_RANGE_TEST_STAIRCASE = 'lr_range_test_staircase' EDGE_VALUE = 'edge_value' MID_VALUE = 'mid_value' CYCLE_FIRST_STEP_SIZE = 'cycle_first_step_size' CYCLE_FIRST_STAIR_COUNT = 'cycle_first_stair_count' CYCLE_SECOND_STEP_SIZE = 'cycle_second_step_size' CYCLE_SECOND_STAIR_COUNT = 'cycle_second_stair_count' DECAY_STEP_SIZE = 'decay_step_size' CYCLE_MIN_LR = 'cycle_min_lr' CYCLE_MAX_LR = 'cycle_max_lr' DECAY_LR_RATE = 'decay_lr_rate' CYCLE_MIN_MOM = 'cycle_min_mom' CYCLE_MAX_MOM = 'cycle_max_mom' DECAY_MOM_RATE = 'decay_mom_rate' WARMUP_MIN_LR = 'warmup_min_lr' WARMUP_MAX_LR = 'warmup_max_lr' WARMUP_NUM_STEPS = 'warmup_num_steps' WARMUP_TYPE = 'warmup_type' WARMUP_LOG_RATE = 'log' WARMUP_LINEAR_RATE = 'linear' TOTAL_NUM_STEPS = 'total_num_steps' def add_tuning_arguments(parser): group = parser.add_argument_group('Convergence Tuning', 'Convergence tuning configurations') # LR scheduler group.add_argument('--lr_schedule', type=str, default=None, help='LR schedule for training.') # Learning rate range test group.add_argument("--lr_range_test_min_lr", type=float, default=0.001, help='Starting lr value.') group.add_argument("--lr_range_test_step_rate", type=float, default=1.0, help='scaling rate for LR range test.') group.add_argument("--lr_range_test_step_size", type=int, default=1000, help='training steps per LR change.') group.add_argument("--lr_range_test_staircase", type=bool, default=False, help='use staircase scaling for LR range test.') # OneCycle schedule group.add_argument("--cycle_first_step_size", type=int, default=1000, help='size of first step of 1Cycle schedule (training steps).') group.add_argument("--cycle_first_stair_count", type=int, default=-1, help='first stair count for 1Cycle schedule.') group.add_argument("--cycle_second_step_size", type=int, default=-1, help='size of second step of 1Cycle schedule (default first_step_size).') group.add_argument("--cycle_second_stair_count", type=int, default=-1, help='second stair count for 1Cycle schedule.') group.add_argument("--decay_step_size", type=int, default=1000, help='size of intervals for applying post cycle decay (training steps).') # 1Cycle LR group.add_argument("--cycle_min_lr", type=float, default=0.01, help='1Cycle LR lower bound.') group.add_argument("--cycle_max_lr", type=float, default=0.1, help='1Cycle LR upper bound.') group.add_argument("--decay_lr_rate", type=float, default=0.0, help='post cycle LR decay rate.') # 1Cycle Momentum group.add_argument('--cycle_momentum', default=False, action='store_true', help='Enable 1Cycle momentum schedule.') group.add_argument("--cycle_min_mom", type=float, default=0.8, help='1Cycle momentum lower bound.') group.add_argument("--cycle_max_mom", type=float, default=0.9, help='1Cycle momentum upper bound.') group.add_argument("--decay_mom_rate", type=float, default=0.0, help='post cycle momentum decay rate.') # Warmup LR group.add_argument('--warmup_min_lr', type=float, default=0, help='WarmupLR minimum/initial LR value') group.add_argument('--warmup_max_lr', type=float, default=0.001, help='WarmupLR maximum LR value.') group.add_argument('--warmup_num_steps', type=int, default=1000, help='WarmupLR step count for LR warmup.') group.add_argument('--warmup_type', type=str, default=WARMUP_LOG_RATE, help='WarmupLR increasing function during warmup') return parser def parse_arguments(): parser = argparse.ArgumentParser() parser = add_tuning_arguments(parser) lr_sched_args, unknown_args = parser.parse_known_args() return lr_sched_args, unknown_args def override_lr_range_test_params(args, params): if hasattr(args, LR_RANGE_TEST_MIN_LR) and args.lr_range_test_min_lr is not None: params[LR_RANGE_TEST_MIN_LR] = args.lr_range_test_min_lr if hasattr(args, LR_RANGE_TEST_STEP_RATE) and args.lr_range_test_step_rate is not None: params[LR_RANGE_TEST_STEP_RATE] = args.lr_range_test_step_rate if hasattr(args, LR_RANGE_TEST_STEP_SIZE) and args.lr_range_test_step_size is not None: params[LR_RANGE_TEST_STEP_SIZE] = args.lr_range_test_step_size if hasattr(args, LR_RANGE_TEST_STAIRCASE) and args.lr_range_test_staircase is not None: params[LR_RANGE_TEST_STAIRCASE] = args.lr_range_test_staircase def override_1cycle_params(args, params): if hasattr(args, CYCLE_FIRST_STEP_SIZE) and args.cycle_first_step_size is not None: params[CYCLE_FIRST_STEP_SIZE] = args.cycle_first_step_size if hasattr(args, CYCLE_FIRST_STAIR_COUNT) and args.cycle_first_stair_count is not None: params[CYCLE_FIRST_STAIR_COUNT] = args.cycle_first_stair_count if hasattr(args, CYCLE_SECOND_STEP_SIZE) and args.cycle_second_step_size is not None: params[CYCLE_SECOND_STEP_SIZE] = args.cycle_second_step_size if hasattr(args, CYCLE_SECOND_STAIR_COUNT) and args.cycle_second_stair_count is not None: params[CYCLE_SECOND_STAIR_COUNT] = args.cycle_second_stair_count if hasattr(args, DECAY_STEP_SIZE) and args.decay_step_size is not None: params[DECAY_STEP_SIZE] = args.decay_step_size # 1Cycle LR params if hasattr(args, CYCLE_MIN_LR) and args.cycle_min_lr is not None: params[CYCLE_MIN_LR] = args.cycle_min_lr if hasattr(args, CYCLE_MAX_LR) and args.cycle_max_lr is not None: params[CYCLE_MAX_LR] = args.cycle_max_lr if hasattr(args, DECAY_LR_RATE) and args.decay_lr_rate is not None: params[DECAY_LR_RATE] = args.decay_lr_rate # 1Cycle MOM params if hasattr(args, CYCLE_MIN_MOM) and args.cycle_min_mom is not None: params[CYCLE_MIN_MOM] = args.cycle_min_mom if hasattr(args, CYCLE_MAX_MOM) and args.cycle_max_mom is not None: params[CYCLE_MAX_MOM] = args.cycle_max_mom if hasattr(args, DECAY_MOM_RATE) and args.decay_mom_rate is not None: params[DECAY_MOM_RATE] = args.decay_mom_rate def override_warmupLR_params(args, params): if hasattr(args, WARMUP_MIN_LR) and args.warmup_min_lr is not None: params[WARMUP_MIN_LR] = args.warmup_min_lr if hasattr(args, WARMUP_MAX_LR) and args.warmup_max_lr is not None: params[WARMUP_MAX_LR] = args.warmup_max_lr if hasattr(args, WARMUP_NUM_STEPS) and args.warmup_num_steps is not None: params[WARMUP_NUM_STEPS] = args.warmup_num_steps if hasattr(args, WARMUP_TYPE) and args.warmup_type is not None: params[WARMUP_TYPE] = args.warmup_type def override_params(args, params): # LR range test params override_lr_range_test_params(args, params) # 1Cycle params override_1cycle_params(args, params) # WarmupLR params override_warmupLR_params(args, params) def get_config_from_args(args): if not hasattr(args, LR_SCHEDULE) or args.lr_schedule is None: return None, '--{} not specified on command line'.format(LR_SCHEDULE) if not args.lr_schedule in VALID_LR_SCHEDULES: return None, '{} is not supported LR schedule'.format(args.lr_schedule) config = {} config['type'] = args.lr_schedule config['params'] = {} if args.lr_schedule == LR_RANGE_TEST: override_lr_range_test_params(args, config['params']) elif args.lr_schedule == ONE_CYCLE: override_1cycle_params(args, config['params']) else: override_warmupLR_params(args, config['params']) return config, None def get_lr_from_config(config): if not 'type' in config: return None, 'LR schedule type not defined in config' if not 'params' in config: return None, 'LR schedule params not defined in config' lr_schedule = config['type'] lr_params = config['params'] if not lr_schedule in VALID_LR_SCHEDULES: return None, '{} is not a valid LR schedule'.format(lr_schedule) if lr_schedule == LR_RANGE_TEST: return lr_params[LR_RANGE_TEST_MIN_LR], '' if lr_schedule == ONE_CYCLE: return lr_params[CYCLE_MAX_LR], '' # Warmup LR return lr_params[WARMUP_MAX_LR], '' """ Only optimizers that are subclass of torch.optim.Optimizer are supported. So check the passed optimizer and wrapped optimizer to see if requirement is satisfied. TODO: Looking under the hood to examine the wrapped optimizer is a hack that requires a better long-term fix. """ def get_torch_optimizer(optimizer): if isinstance(optimizer, Optimizer): return optimizer if hasattr(optimizer, 'optimizer') and isinstance(optimizer.optimizer, Optimizer): return optimizer.optimizer raise TypeError('{} is not a subclass of torch.optim.Optimizer'.format(type(optimizer).__name__)) class LRRangeTest(object): """Sets the learning rate of each parameter group according to learning rate range test (LRRT) policy. The policy increases learning rate starting from a base value with a constant frequency, as detailed in the paper `A disciplined approach to neural network hyper-parameters: Part1`_. LRRT policy is used for finding maximum LR that trains a model without divergence, and can be used to configure the LR boundaries for Cyclic LR schedules. LRRT changes the learning rate after every batch. `step` should be called after a batch has been used for training. Args: optimizer (Optimizer): Wrapped optimizer. lr_range_test_min_lr (float or list): Initial learning rate which is the lower boundary in the range test for each parameter group. lr_range_test_step_size (int): Interval of training steps to increase learning rate. Default: 2000 lr_range_test_step_rate (float): Scaling rate for range test. Default: 1.0 lr_range_test_staircase (bool): Scale in staircase fashion, rather than continuous. Default: False. last_batch_iteration (int): The index of the last batch. This parameter is used when resuming a training job. Since `step()` should be invoked after each batch instead of after each epoch, this number represents the total number of *batches* computed, not the total number of epochs computed. When last_batch_iteration=-1, the schedule is started from the beginning. Default: -1 Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = LRRangeTest(optimizer) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> scheduler.step() _A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay: https://arxiv.org/abs/1803.09820 """ def __init__(self, optimizer: Optimizer, lr_range_test_min_lr: float = 1e-3, lr_range_test_step_size: int = 2000, lr_range_test_step_rate: float = 1.0, lr_range_test_staircase: bool = False, last_batch_iteration: int = -1): self.optimizer = get_torch_optimizer(optimizer) if isinstance(lr_range_test_min_lr, list) or isinstance(lr_range_test_min_lr, tuple): if len(lr_range_test_min_lr) != len(self.optimizer.param_groups): raise ValueError("expected {} lr_range_test_min_lr, got {}".format(len(self.optimizer.param_groups), len(lr_range_test_min_lr))) self.min_lr = list(lr_range_test_min_lr) else: self.min_lr = [lr_range_test_min_lr] * len(self.optimizer.param_groups) self.step_size = lr_range_test_step_size self.step_rate = lr_range_test_step_rate self.last_batch_iteration = last_batch_iteration self.staircase = lr_range_test_staircase self.interval_fn = self._staircase_interval if lr_range_test_staircase else self._continuous_interval if last_batch_iteration == -1: self._update_optimizer(self.min_lr) def _staircase_interval(self): return math.floor(float(self.last_batch_iteration + 1) / self.step_size) def _continuous_interval(self): return float(self.last_batch_iteration + 1) / self.step_size def _get_increase(self): return (1 + self.step_rate * self.interval_fn()) def get_lr(self): lr_increase = self._get_increase() return [lr_range_test_min_lr * lr_increase for lr_range_test_min_lr in self.min_lr] def get_last_lr(self): """ Return last computed learning rate by current scheduler. """ assert getattr(self, '_last_lr', None) is not None, "need to call step() first" return self._last_lr def _update_optimizer(self, group_lrs): for param_group, lr in zip(self.optimizer.param_groups, group_lrs): param_group['lr'] = lr def step(self, batch_iteration=None): if batch_iteration is None: batch_iteration = self.last_batch_iteration + 1 self.last_batch_iteration = batch_iteration self._update_optimizer(self.get_lr()) self._last_lr = [group['lr'] for group in self.optimizer.param_groups] def state_dict(self): return {'last_batch_iteration': self.last_batch_iteration} def load_state_dict(self, sd): self.last_batch_iteration = sd['last_batch_iteration'] class OneCycle(object): """Sets the learning rate of each parameter group according to 1Cycle learning rate policy (1CLR). 1CLR is a variation of the Cyclical Learning Rate (CLR) policy that involves one cycle followed by decay. The policy simultaneously cycles the learning rate (and momentum) between two boundaries with a constant frequency, as detailed in the paper `A disciplined approach to neural network hyper-parameters`_. 1CLR policy changes the learning rate after every batch. `step` should be called after a batch has been used for training. This implementation was adapted from the github repo: `pytorch/pytorch`_ Args: optimizer (Optimizer): Wrapped optimizer. cycle_min_lr (float or list): Initial learning rate which is the lower boundary in the cycle for each parameter group. cycle_max_lr (float or list): Upper learning rate boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (cycle_max_lr - cycle_min_lr). The lr at any cycle is the sum of cycle_min_lr and some scaling of the amplitude; therefore cycle_max_lr may not actually be reached depending on scaling function. decay_lr_rate(float): Decay rate for learning rate. Default: 0. cycle_first_step_size (int): Number of training iterations in the increasing half of a cycle. Default: 2000 cycle_second_step_size (int): Number of training iterations in the decreasing half of a cycle. If cycle_second_step_size is None, it is set to cycle_first_step_size. Default: None cycle_first_stair_count(int): Number of stairs in first half of cycle phase. This means lr/mom are changed in staircase fashion. Default 0, means staircase disabled. cycle_second_stair_count(int): Number of stairs in second half of cycle phase. This means lr/mom are changed in staircase fashion. Default 0, means staircase disabled. decay_step_size (int): Intervals for applying decay in decay phase. Default: 0, means no decay. cycle_momentum (bool): If ``True``, momentum is cycled inversely to learning rate between 'cycle_min_mom' and 'cycle_max_mom'. Default: True cycle_min_mom (float or list): Initial momentum which is the lower boundary in the cycle for each parameter group. Default: 0.8 cycle_max_mom (float or list): Upper momentum boundaries in the cycle for each parameter group. Functionally, it defines the cycle amplitude (cycle_max_mom - cycle_min_mom). The momentum at any cycle is the difference of cycle_max_mom and some scaling of the amplitude; therefore cycle_min_mom may not actually be reached depending on scaling function. Default: 0.9 decay_mom_rate (float): Decay rate for momentum. Default: 0. last_batch_iteration (int): The index of the last batch. This parameter is used when resuming a training job. Since `step()` should be invoked after each batch instead of after each epoch, this number represents the total number of *batches* computed, not the total number of epochs computed. When last_batch_iteration=-1, the schedule is started from the beginning. Default: -1 Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = OneCycle(optimizer, 0.0001, 0.0010) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> scheduler.step() .. _A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size, momentum, and weight decay: https://arxiv.org/abs/1803.09820 """ def __init__(self, optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate=0., cycle_first_step_size=2000, cycle_second_step_size=None, cycle_first_stair_count=0, cycle_second_stair_count=None, decay_step_size=0, cycle_momentum=True, cycle_min_mom=0.8, cycle_max_mom=0.9, decay_mom_rate=0., last_batch_iteration=-1): self.optimizer = get_torch_optimizer(optimizer) # Initialize cycle shape self._initialize_cycle(cycle_first_step_size, cycle_second_step_size, cycle_first_stair_count, cycle_second_stair_count, decay_step_size) # Initialize cycle lr self._initialize_lr(self.optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate, last_batch_iteration) # Initialize cyclic momentum self.cycle_momentum = cycle_momentum if cycle_momentum: self._initialize_momentum(self.optimizer, cycle_min_mom, cycle_max_mom, decay_mom_rate, last_batch_iteration) # Initialize batch iteration tracker self.last_batch_iteration = last_batch_iteration # Configure cycle shape def _initialize_cycle(self, cycle_first_step_size, cycle_second_step_size, cycle_first_stair_count, cycle_second_stair_count, decay_step_size): cycle_first_step_size = float(cycle_first_step_size) cycle_second_step_size = float( cycle_second_step_size) if cycle_second_step_size is not None else cycle_first_step_size self.total_size = cycle_first_step_size + cycle_second_step_size self.step_ratio = cycle_first_step_size / self.total_size self.first_stair_count = cycle_first_stair_count self.second_stair_count = cycle_first_stair_count if cycle_second_stair_count is None else cycle_second_stair_count self.decay_step_size = decay_step_size if math.isclose(self.decay_step_size, 0): self.skip_lr_decay = True self.skip_mom_decay = True else: self.skip_lr_decay = False self.skip_mom_decay = False # Configure lr schedule def _initialize_lr(self, optimizer, cycle_min_lr, cycle_max_lr, decay_lr_rate, last_batch_iteration): self.min_lrs = [cycle_min_lr] * len(optimizer.param_groups) if last_batch_iteration == -1: for lr, group in zip(self.min_lrs, optimizer.param_groups): group['lr'] = lr self.max_lrs = [cycle_max_lr] * len(optimizer.param_groups) self.decay_lr_rate = decay_lr_rate if math.isclose(self.decay_lr_rate, 0): self.skip_lr_decay = True # Configure momentum schedule def _initialize_momentum(self, optimizer, cycle_min_mom, cycle_max_mom, decay_mom_rate, last_batch_iteration): if 'betas' not in optimizer.defaults: optimizer_name = type(optimizer).__name__ logger.warn( f"cycle_momentum is disabled because optimizer {optimizer_name} does not support momentum, no betas attribute in defaults" ) self.cycle_momentum = False return self.decay_mom_rate = decay_mom_rate self.min_moms = [(cycle_min_mom, 0.99)] * len(optimizer.param_groups) self.max_moms = [(cycle_max_mom, 0.99)] * len(optimizer.param_groups) if last_batch_iteration == -1: for momentum, group in zip(self.min_moms, optimizer.param_groups): group['betas'] = momentum if math.isclose(self.decay_mom_rate, 0): self.skip_mom_decay = True def _get_scale_factor(self): batch_iteration = (self.last_batch_iteration + 1) cycle = math.floor(1 + batch_iteration / self.total_size) x = 1. + batch_iteration / self.total_size - cycle if x <= self.step_ratio: scale_factor = x / self.step_ratio else: scale_factor = (x - 1) / (self.step_ratio - 1) return scale_factor def _get_cycle_mom(self): scale_factor = self._get_scale_factor() momentums = [] for base_betas, max_betas in zip(self.min_moms, self.max_moms): cycle_min_mom = base_betas[0] cycle_max_mom = max_betas[0] base_height = (cycle_max_mom - cycle_min_mom) * scale_factor momentum = cycle_max_mom - base_height momentums.append((momentum, base_betas[1])) return momentums def _get_cycle_lr(self): scale_factor = self._get_scale_factor() lrs = [] for cycle_min_lr, cycle_max_lr in zip(self.min_lrs, self.max_lrs): base_height = (cycle_max_lr - cycle_min_lr) * scale_factor lr = cycle_min_lr + base_height lrs.append(lr) return lrs def _get_decay_mom(self, decay_batch_iteration): if self.skip_mom_decay: return self.max_moms decay_interval = decay_batch_iteration / self.decay_step_size mom_decay_factor = (1 + self.decay_mom_rate * decay_interval) momentums = [(beta0 * mom_decay_factor, beta1) for beta0, beta1 in self.max_moms] return momentums def _get_decay_lr(self, decay_batch_iteration): """Calculates the learning rate at batch index. This function is used after the cycle completes and post cycle decaying of lr/mom is enabled. This function treats `self.last_batch_iteration` as the last batch index. """ if self.skip_lr_decay: return self.min_lrs decay_interval = decay_batch_iteration / self.decay_step_size lr_decay_factor = (1 + self.decay_lr_rate * decay_interval) lrs = [cycle_min_lr / lr_decay_factor for cycle_min_lr in self.min_lrs] return lrs def get_lr(self): """Calculates the learning rate at batch index. This function treats `self.last_batch_iteration` as the last batch index. """ if self.last_batch_iteration < self.total_size: return self._get_cycle_lr() return self._get_decay_lr(self.last_batch_iteration - self.total_size + 1) def get_mom(self): """Calculates the momentum at batch index. This function treats `self.last_batch_iteration` as the last batch index. """ if not self.cycle_momentum: return None if self.last_batch_iteration < self.total_size: return self._get_cycle_mom() return self._get_decay_mom(self.last_batch_iteration - self.total_size + 1) def get_last_lr(self): """ Return last computed learning rate by current scheduler. """ assert getattr(self, '_last_lr', None) is not None, "need to call step() first" return self._last_lr def step(self, batch_iteration=None): """ Updates the optimizer with the learning rate for the last batch index. `self.last_batch_iteration` is treated as the last batch index. If self.cycle_momentum is true, also updates optimizer momentum. """ if batch_iteration is None: batch_iteration = self.last_batch_iteration + 1 self.last_batch_iteration = batch_iteration for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr self._last_lr = [group['lr'] for group in self.optimizer.param_groups] if self.cycle_momentum: momentums = self.get_mom() for param_group, momentum in zip(self.optimizer.param_groups, momentums): param_group['betas'] = momentum def state_dict(self): return {'last_batch_iteration': self.last_batch_iteration} def load_state_dict(self, sd): self.last_batch_iteration = sd['last_batch_iteration'] class WarmupLR(object): """Increase the learning rate of each parameter group from min lr to max lr over warmup_num_steps steps, and then fix at max lr. Args: optimizer (Optimizer): Wrapped optimizer. warmup_min_lr (float or list): minimum learning rate. Default: 0 warmup_max_lr (float or list): maximum learning rate. Default: 0.001 warmup_num_steps (int): number of steps to warm up from min_lr to max_lr. Default: 1000 warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log last_batch_iteration (int): The index of the last batch. Default: -1. Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = WarmupLR(optimizer) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> scheduler.step() """ def __init__(self, optimizer: Optimizer, warmup_min_lr: float = 0.0, warmup_max_lr: float = 0.001, warmup_num_steps: int = 1000, warmup_type: str = WARMUP_LOG_RATE, last_batch_iteration: int = -1): self.optimizer = get_torch_optimizer(optimizer) self.min_lrs = self._format_param(self.optimizer, warmup_min_lr, "min_lr") self.max_lrs = self._format_param(self.optimizer, warmup_max_lr, "max_lr") self.delta_lrs = [big - small for big, small in zip(self.max_lrs, self.min_lrs)] self.warmup_num_steps = max(2, warmup_num_steps) # Currently only support linear and log function if warmup_type not in {WARMUP_LOG_RATE, WARMUP_LINEAR_RATE}: logger.warning(f"Using unknown warmup_type: {warmup_type}. The increasing function " f"is set to default (log)") warmup_type = WARMUP_LOG_RATE self.warmup_type = warmup_type self.inverse_log_warm_up = 1.0 / math.log(self.warmup_num_steps) self.last_batch_iteration = last_batch_iteration def get_lr(self): if self.last_batch_iteration < 0: logger.warning("Attempting to get learning rate from scheduler before it has started") return [0.0] gamma = self._get_gamma() return [min_lr + (delta_lr * gamma) for min_lr, delta_lr in zip(self.min_lrs, self.delta_lrs)] def get_last_lr(self): """ Return last computed learning rate by current scheduler. """ assert getattr(self, '_last_lr', None) is not None, "need to call step() first" return self._last_lr def step(self, last_batch_iteration=None): if last_batch_iteration is None: last_batch_iteration = self.last_batch_iteration + 1 self.last_batch_iteration = last_batch_iteration for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr self._last_lr = [group['lr'] for group in self.optimizer.param_groups] def state_dict(self): return {'last_batch_iteration': self.last_batch_iteration} def load_state_dict(self, sd): self.last_batch_iteration = sd['last_batch_iteration'] def _get_gamma(self): if self.last_batch_iteration < self.warmup_num_steps: if self.warmup_type == WARMUP_LOG_RATE: return self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1) elif self.warmup_type == WARMUP_LINEAR_RATE: return self.last_batch_iteration / self.warmup_num_steps return 1.0 def _format_param(self, optimizer, param_value, param_name): if isinstance(param_value, list) or isinstance(param_value, tuple): if len(param_value) != len(optimizer.param_groups): raise ValueError("expected {} value for {}, got {}".format(len(optimizer.param_groups), param_name, FileNotFoundError(param_value))) return list(param_value) return [param_value] * len(optimizer.param_groups) class WarmupDecayLR(WarmupLR): """Increase the learning rate of each parameter group from min lr to max lr over warmup_num_steps steps, and then decay at linear rate over the remaining training steps. Args: optimizer (Optimizer): Wrapped optimizer. total_num_steps (int): total number of training steps warmup_min_lr (float or list): minimum learning rate. Default: 0 warmup_max_lr (float or list): maximum learning rate. Default: 0.001 warmup_num_steps (int): number of steps to warm up from min_lr to max_lr. Default: 1000 warmup_type {‘log’, ‘linear’}: increasing function from min_lr to max_lr during warmup. Default: log last_batch_iteration (int): The index of the last batch. Default: -1. Example: >>> optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9) >>> scheduler = WarmupDecayLR(optimizer, 1000000) >>> data_loader = torch.utils.data.DataLoader(...) >>> for epoch in range(10): >>> for batch in data_loader: >>> train_batch(...) >>> scheduler.step() """ def __init__(self, optimizer: Optimizer, total_num_steps: int, warmup_min_lr: float = 0.0, warmup_max_lr: float = 0.001, warmup_num_steps: int = 1000, warmup_type: str = WARMUP_LOG_RATE, last_batch_iteration: int = -1): self.total_num_steps = total_num_steps super(WarmupDecayLR, self).__init__(optimizer, warmup_min_lr, warmup_max_lr, warmup_num_steps, warmup_type, last_batch_iteration) if self.total_num_steps < self.warmup_num_steps: logger.warning('total_num_steps {} is less than warmup_num_steps {}'.format( total_num_steps, warmup_num_steps)) def _get_gamma(self): if self.last_batch_iteration < self.warmup_num_steps: if self.warmup_type == WARMUP_LOG_RATE: return self.inverse_log_warm_up * math.log(self.last_batch_iteration + 1) elif self.warmup_type == WARMUP_LINEAR_RATE: return self.last_batch_iteration / self.warmup_num_steps return max( 0.0, float(self.total_num_steps - self.last_batch_iteration) / float(max(1.0, self.total_num_steps - self.warmup_num_steps)))